Learning All Credible Bayesian Network Structures for Model Averaging
- URL: http://arxiv.org/abs/2008.13618v1
- Date: Thu, 27 Aug 2020 19:56:27 GMT
- Title: Learning All Credible Bayesian Network Structures for Model Averaging
- Authors: Zhenyu A. Liao, Charupriya Sharma, James Cussens, Peter van Beek
- Abstract summary: We propose a novel approach to model averaging inspired by performance guarantees in approximation algorithms.
Our approach is more efficient and scales to significantly larger Bayesian networks than existing approaches.
- Score: 3.81379858342235
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Bayesian network is a widely used probabilistic graphical model with
applications in knowledge discovery and prediction. Learning a Bayesian network
(BN) from data can be cast as an optimization problem using the well-known
score-and-search approach. However, selecting a single model (i.e., the best
scoring BN) can be misleading or may not achieve the best possible accuracy. An
alternative to committing to a single model is to perform some form of Bayesian
or frequentist model averaging, where the space of possible BNs is sampled or
enumerated in some fashion. Unfortunately, existing approaches for model
averaging either severely restrict the structure of the Bayesian network or
have only been shown to scale to networks with fewer than 30 random variables.
In this paper, we propose a novel approach to model averaging inspired by
performance guarantees in approximation algorithms. Our approach has two
primary advantages. First, our approach only considers credible models in that
they are optimal or near-optimal in score. Second, our approach is more
efficient and scales to significantly larger Bayesian networks than existing
approaches.
Related papers
- BEND: Bagging Deep Learning Training Based on Efficient Neural Network Diffusion [56.9358325168226]
We propose a Bagging deep learning training algorithm based on Efficient Neural network Diffusion (BEND)
Our approach is simple but effective, first using multiple trained model weights and biases as inputs to train autoencoder and latent diffusion model.
Our proposed BEND algorithm can consistently outperform the mean and median accuracies of both the original trained model and the diffused model.
arXiv Detail & Related papers (2024-03-23T08:40:38Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - Window-Based Early-Exit Cascades for Uncertainty Estimation: When Deep
Ensembles are More Efficient than Single Models [5.0401589279256065]
We show that ensembles can be more computationally efficient (at inference) than scaling single models within an architecture family.
In this work, we investigate extending these efficiency gains to tasks related to uncertainty estimation.
Experiments on ImageNet-scale data across a number of network architectures and uncertainty tasks show that the proposed window-based early-exit approach is able to achieve a superior uncertainty-computation trade-off.
arXiv Detail & Related papers (2023-03-14T15:57:54Z) - VertiBayes: Learning Bayesian network parameters from vertically partitioned data with missing values [2.9707233220536313]
Federated learning makes it possible to train a machine learning model on decentralized data.
We propose a novel method called VertiBayes to train Bayesian networks on vertically partitioned data.
We experimentally show our approach produces models comparable to those learnt using traditional algorithms.
arXiv Detail & Related papers (2022-10-31T11:13:35Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
We take a two-step approach by first modeling the probability distribution and then sampling from that model.
We show that these models can approximate a large class of densities concisely using few evaluations, and present a simple algorithm to effectively sample from these models.
arXiv Detail & Related papers (2021-10-20T12:25:22Z) - Fast Network Community Detection with Profile-Pseudo Likelihood Methods [19.639557431997037]
Most algorithms for fitting the block model likelihood function cannot scale to large-scale networks.
We propose a novel likelihood approach that decouples row and column labels in the likelihood function.
We show that our method provides strongly consistent estimates of the communities in a block model.
arXiv Detail & Related papers (2020-11-01T23:40:26Z) - Probabilistic Case-based Reasoning for Open-World Knowledge Graph
Completion [59.549664231655726]
A case-based reasoning (CBR) system solves a new problem by retrieving cases' that are similar to the given problem.
In this paper, we demonstrate that such a system is achievable for reasoning in knowledge-bases (KBs)
Our approach predicts attributes for an entity by gathering reasoning paths from similar entities in the KB.
arXiv Detail & Related papers (2020-10-07T17:48:12Z) - Neural Model-based Optimization with Right-Censored Observations [42.530925002607376]
Neural networks (NNs) have been demonstrated to work well at the core of model-based optimization procedures.
We show that our trained regression models achieve a better predictive quality than several baselines.
arXiv Detail & Related papers (2020-09-29T07:32:30Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.