Machine Learning Clustering Techniques for Selective Mitigation of
Critical Design Features
- URL: http://arxiv.org/abs/2008.13664v2
- Date: Fri, 2 Apr 2021 15:48:17 GMT
- Title: Machine Learning Clustering Techniques for Selective Mitigation of
Critical Design Features
- Authors: Thomas Lange, Aneesh Balakrishnan, Maximilien Glorieux, Dan
Alexandrescu, Luca Sterpone
- Abstract summary: This paper presents a new methodology which uses machine learning clustering techniques to group flip-flops with similar expected contributions to the overall functional failure rate.
Fault simulation campaigns can then be executed on a per-group basis, significantly reducing the time and cost of the evaluation.
- Score: 0.16311150636417257
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Selective mitigation or selective hardening is an effective technique to
obtain a good trade-off between the improvements in the overall reliability of
a circuit and the hardware overhead induced by the hardening techniques.
Selective mitigation relies on preferentially protecting circuit instances
according to their susceptibility and criticality. However, ranking circuit
parts in terms of vulnerability usually requires computationally intensive
fault-injection simulation campaigns. This paper presents a new methodology
which uses machine learning clustering techniques to group flip-flops with
similar expected contributions to the overall functional failure rate, based on
the analysis of a compact set of features combining attributes from static
elements and dynamic elements. Fault simulation campaigns can then be executed
on a per-group basis, significantly reducing the time and cost of the
evaluation. The effectiveness of grouping similar sensitive flip-flops by
machine learning clustering algorithms is evaluated on a practical
example.Different clustering algorithms are applied and the results are
compared to an ideal selective mitigation obtained by exhaustive
fault-injection simulation.
Related papers
- GCC: Generative Calibration Clustering [55.44944397168619]
We propose a novel Generative Clustering (GCC) method to incorporate feature learning and augmentation into clustering procedure.
First, we develop a discrimirative feature alignment mechanism to discover intrinsic relationship across real and generated samples.
Second, we design a self-supervised metric learning to generate more reliable cluster assignment.
arXiv Detail & Related papers (2024-04-14T01:51:11Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Achieving Sample and Computational Efficient Reinforcement Learning by
Action Space Reduction via Grouping [7.691755449724638]
Reinforcement learning often needs to deal with the exponential growth of states and actions in high-dimensional spaces.
We learn the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity.
arXiv Detail & Related papers (2023-06-22T15:40:10Z) - A Parameter-free Adaptive Resonance Theory-based Topological Clustering
Algorithm Capable of Continual Learning [20.995946115633963]
We propose a new parameter-free ART-based topological clustering algorithm capable of continual learning by introducing parameter estimation methods.
Experimental results with synthetic and real-world datasets show that the proposed algorithm has superior clustering performance to the state-of-the-art clustering algorithms without any parameter pre-specifications.
arXiv Detail & Related papers (2023-05-01T01:04:07Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Performance Evaluation of Adversarial Attacks: Discrepancies and
Solutions [51.8695223602729]
adversarial attack methods have been developed to challenge the robustness of machine learning models.
We propose a Piece-wise Sampling Curving (PSC) toolkit to effectively address the discrepancy.
PSC toolkit offers options for balancing the computational cost and evaluation effectiveness.
arXiv Detail & Related papers (2021-04-22T14:36:51Z) - Active Hybrid Classification [79.02441914023811]
This paper shows how crowd and machines can support each other in tackling classification problems.
We propose an architecture that orchestrates active learning and crowd classification and combines them in a virtuous cycle.
arXiv Detail & Related papers (2021-01-21T21:09:07Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
We propose a black-box adversarial attack for crafting adversarial samples to test the robustness of clustering algorithms.
We show that our attacks are transferable even against supervised algorithms such as SVMs, random forests, and neural networks.
arXiv Detail & Related papers (2020-09-09T18:19:31Z) - Machine Learning to Tackle the Challenges of Transient and Soft Errors
in Complex Circuits [0.16311150636417257]
Machine learning models are used to predict accurate per-instance Functional De-Rating data for the full list of circuit instances.
The presented methodology is applied on a practical example and various machine learning models are evaluated and compared.
arXiv Detail & Related papers (2020-02-18T18:38:54Z) - On the Estimation of Complex Circuits Functional Failure Rate by Machine
Learning Techniques [0.16311150636417257]
De-Rating or Vulnerability Factors are a major feature of failure analysis efforts mandated by today's Functional Safety requirements.
New approach is proposed which uses Machine Learning to estimate the Functional De-Rating of individual flip-flops.
arXiv Detail & Related papers (2020-02-18T15:18:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.