論文の概要: LaDDer: Latent Data Distribution Modelling with a Generative Prior
- arxiv url: http://arxiv.org/abs/2009.00088v1
- Date: Mon, 31 Aug 2020 20:10:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 07:18:54.237154
- Title: LaDDer: Latent Data Distribution Modelling with a Generative Prior
- Title(参考訳): ladder: 生成前処理による潜在データ分散モデリング
- Authors: Shuyu Lin and Ronald Clark
- Abstract要約: 変分オートエンコーダフレームワークにおける遅延データ分布の正確なモデリングを実現するため,LaDDerを提案する。
LaDDerはメタ埋め込みの概念で、複数のVAEモデルを使用して埋め込みの埋め込みを学ぶ。
本稿では,LaDDerモデルを用いて複雑な潜伏分布を正確に推定し,表現品質の向上を図っている。
- 参考スコア(独自算出の注目度): 21.27563489899532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we show that the performance of a learnt generative model is
closely related to the model's ability to accurately represent the inferred
\textbf{latent data distribution}, i.e. its topology and structural properties.
We propose LaDDer to achieve accurate modelling of the latent data distribution
in a variational autoencoder framework and to facilitate better representation
learning. The central idea of LaDDer is a meta-embedding concept, which uses
multiple VAE models to learn an embedding of the embeddings, forming a ladder
of encodings. We use a non-parametric mixture as the hyper prior for the
innermost VAE and learn all the parameters in a unified variational framework.
From extensive experiments, we show that our LaDDer model is able to accurately
estimate complex latent distribution and results in improvement in the
representation quality. We also propose a novel latent space interpolation
method that utilises the derived data distribution.
- Abstract(参考訳): 本稿では,学習生成モデルの性能が,推定された \textbf{latent data distribution} ,すなわちそのトポロジーと構造特性を正確に表現するモデルの能力と密接に関連していることを示す。
変分オートエンコーダフレームワークにおける遅延データ分布の正確なモデリングと表現学習を容易にするため,LaDDerを提案する。
LaDDerの中心的な考え方はメタ埋め込みの概念であり、複数のVAEモデルを使用して埋め込みの埋め込みを学び、エンコーディングのはしごを形成する。
非パラメトリック混合を最内側のvaeのハイパープリミティブとして使用し、すべてのパラメータを統一変分フレームワークで学習する。
実験の結果,LaDDerモデルでは複雑な潜伏分布を正確に推定でき,表現品質の向上が期待できることがわかった。
また、導出データ分布を利用した新しい潜時空間補間法を提案する。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Data-Juicer Sandbox: A Comprehensive Suite for Multimodal Data-Model Co-development [67.55944651679864]
統合データモデル共同開発に適した新しいサンドボックススイートを提案する。
このサンドボックスは包括的な実験プラットフォームを提供し、データとモデルの両方の迅速なイテレーションと洞察駆動による改善を可能にする。
また、徹底的なベンチマークから得られた実りある洞察を明らかにし、データ品質、多様性、モデル行動の間の重要な相互作用に光を当てています。
論文 参考訳(メタデータ) (2024-07-16T14:40:07Z) - An improved tabular data generator with VAE-GMM integration [9.4491536689161]
本稿では,現在のアプローチの限界に対処する新しい変分オートエンコーダ(VAE)モデルを提案する。
本手法は,TVAEモデルにインスパイアされたベイジアン・ガウス混合モデル(BGM)をVAEアーキテクチャに組み込む。
我々は,2つの医療関連データセットを含む混合データ型を持つ実世界の3つのデータセットに対して,我々のモデルを徹底的に検証する。
論文 参考訳(メタデータ) (2024-04-12T12:31:06Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
本研究では,分散型拡散モデルに基づくトレーニングフリーなデータ拡張フレームワークであるDistDiffを提案する。
DistDiffは、オリジナルデータのみにトレーニングされたモデルと比較して、さまざまなデータセットの精度を一貫して向上させる。
論文 参考訳(メタデータ) (2024-03-11T14:07:53Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
本稿では,任意の生成モデルの学習を指導するDiff-Instructというフレームワークを提案する。
Diff-Instructは、最先端の単一ステップ拡散モデルであることを示す。
GANモデルの精製実験により、Diff-InstructはGANモデルの事前訓練されたジェネレータを一貫して改善できることが示されている。
論文 参考訳(メタデータ) (2023-05-29T04:22:57Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Flag Aggregator: Scalable Distributed Training under Failures and
Augmented Losses using Convex Optimization [14.732408788010313]
MLアプリケーションはますます、複雑なディープラーニングモデルと大規模なデータセットに依存している。
計算とデータをスケールするために、これらのモデルはノードのクラスタ内で分散的にトレーニングされ、それらの更新はモデルに適用される前に集約される。
これらの設定にデータ拡張を加えることで、堅牢で効率的なアグリゲーションシステムが必要である。
この手法は,最先端のビザンツ系レジリエントアグリゲータのロバスト性を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-02-12T06:38:30Z) - Generative Model without Prior Distribution Matching [26.91643368299913]
変分オートエンコーダ(VAE)とその変分は、いくつかの先行分布を満たすために低次元の潜在表現を学習することによって古典的な生成モデルである。
我々は、先行変数に適合させるのではなく、先行変数が埋め込み分布と一致するように提案する。
論文 参考訳(メタデータ) (2020-09-23T09:33:24Z) - Characterizing and Avoiding Problematic Global Optima of Variational
Autoencoders [28.36260646471421]
変分自動エンコーダ(VAEs)は、深部生成潜在変数モデルである。
最近の研究は、伝統的な訓練手法がデシダラタに反する解決策をもたらす傾向があることを示している。
どちらの問題も、VAEトレーニング目標のグローバルな最適度が望ましくない解決策とよく一致するという事実に起因していることを示す。
論文 参考訳(メタデータ) (2020-03-17T15:14:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。