論文の概要: Deep Structure Learning using Feature Extraction in Trained Projection
Space
- arxiv url: http://arxiv.org/abs/2009.00378v3
- Date: Mon, 22 Feb 2021 15:58:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 01:53:37.405590
- Title: Deep Structure Learning using Feature Extraction in Trained Projection
Space
- Title(参考訳): 訓練射影空間における特徴抽出を用いた深部構造学習
- Authors: Christoph Angermann and Markus Haltmeier
- Abstract要約: 我々は、低次元空間における畳み込みによる特徴抽出を可能にするために、Randon-transform(線形データ投影)の自己調整およびデータ依存バージョンを用いてネットワークアーキテクチャを導入する。
PiNetという名前のフレームワークは、エンドツーエンドでトレーニングでき、ボリュームセグメンテーションタスクで有望なパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the last decade of machine learning, convolutional neural networks have
been the most striking successes for feature extraction of rich sensory and
high-dimensional data. While learning data representations via convolutions is
already well studied and efficiently implemented in various deep learning
libraries, one often faces limited memory capacity and insufficient number of
training data, especially for high-dimensional and large-scale tasks. To
overcome these limitations, we introduce a network architecture using a
self-adjusting and data dependent version of the Radon-transform (linear data
projection), also known as x-ray projection, to enable feature extraction via
convolutions in lower-dimensional space. The resulting framework, named PiNet,
can be trained end-to-end and shows promising performance on volumetric
segmentation tasks. We test proposed model on public datasets to show that our
approach achieves comparable results only using fractional amount of
parameters. Investigation of memory usage and processing time confirms PiNet's
superior efficiency compared to other segmentation models.
- Abstract(参考訳): 機械学習の過去10年間、畳み込みニューラルネットワークは、リッチな知覚および高次元データの特徴抽出において、最も大きな成功を収めてきた。
畳み込みによるデータ表現はすでに十分に研究され、さまざまなディープラーニングライブラリで効率的に実装されているが、特に高次元および大規模タスクでは、メモリ容量の制限やトレーニングデータの不足に直面することが多い。
これらの制約を克服するために、低次元空間における畳み込みによる特徴抽出を可能にするために、Randon-transform(線形データ投影)の自己調整およびデータ依存バージョンを用いてネットワークアーキテクチャを導入する。
PiNetというフレームワークはエンドツーエンドでトレーニングでき、ボリュームセグメンテーションタスクで有望なパフォーマンスを示す。
我々は,提案手法がパラメータの分数のみを用いて比較結果が得られることを示すために,公開データセット上で提案モデルをテストした。
メモリ使用量と処理時間を調べると、パイントは他のセグメンテーションモデルよりも優れた効率を示す。
関連論文リスト
- Long-Tailed Recognition on Binary Networks by Calibrating A Pre-trained Model [18.58663937035378]
高リソース効率のバイナリニューラルネットワークをバックボーンとして使用することで、長い尾の分布を学習するという課題に対処する。
そこで本研究では,バランスの取れたデータセットでトレーニングされた既訓練完全精度モデルを用いて,蒸留の教師として使用するキャリブレート・アンド・ディスティルフレームワークを提案する。
種々のデータセットをより一般化するために,目的関数の項間の新たな対角バランスと,効率的な多分解能学習手法を提案する。
論文 参考訳(メタデータ) (2024-03-30T08:37:19Z) - Data Augmentations in Deep Weight Spaces [89.45272760013928]
そこで本研究では,Mixup法に基づく新しい拡張手法を提案する。
既存のベンチマークと新しいベンチマークでこれらのテクニックのパフォーマンスを評価する。
論文 参考訳(メタデータ) (2023-11-15T10:43:13Z) - Dataset Quantization [72.61936019738076]
大規模データセットを小さなサブセットに圧縮する新しいフレームワークであるデータセット量子化(DQ)を提案する。
DQは、ImageNet-1kのような大規模データセットを最先端圧縮比で蒸留する最初の方法である。
論文 参考訳(メタデータ) (2023-08-21T07:24:29Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Transformer-Based Behavioral Representation Learning Enables Transfer
Learning for Mobile Sensing in Small Datasets [4.276883061502341]
時系列から一般化可能な特徴表現を学習できるモバイルセンシングデータのためのニューラルネットワークフレームワークを提供する。
このアーキテクチャは、CNNとTrans-formerアーキテクチャの利点を組み合わせて、より良い予測性能を実現する。
論文 参考訳(メタデータ) (2021-07-09T22:26:50Z) - Learning Purified Feature Representations from Task-irrelevant Labels [18.967445416679624]
本稿では,タスク関連ラベルから抽出したタスク関連機能を利用したPurifiedLearningという新しい学習フレームワークを提案する。
本研究は,PurifiedLearningの有効性を実証する,ソリッド理論解析と広範囲な実験に基づいている。
論文 参考訳(メタデータ) (2021-02-22T12:50:49Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - On the Difficulty of Designing Processor Arrays for Deep Neural Networks [0.0]
カムーイ (Camuy) は、線形代数演算のための重み付き定常シストリックアレイの軽量モデルである。
本稿では,必要サイクル,データ移動コスト,およびシストリックアレイの利用率を推定する方法を説明するために,人気モデルの解析を行う。
論文 参考訳(メタデータ) (2020-06-24T19:24:08Z) - Dataset Condensation with Gradient Matching [36.14340188365505]
本研究では,大規模なデータセットを,深層ニューラルネットワークをスクラッチからトレーニングするための情報的合成サンプルの小さなセットに凝縮させることを学習する,データセット凝縮という,データ効率のよい学習のためのトレーニングセット合成手法を提案する。
いくつかのコンピュータビジョンベンチマークでその性能を厳格に評価し、最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-10T16:30:52Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
ネットワークトレーニングにおいて,信頼度の高いサンプルを多量のラベルのないデータで活用するためのオムニ教師付き学習を提案する。
我々は,新しいデータセットが学習したFERモデルの能力を大幅に向上させることができることを実験的に検証した。
そこで本研究では,生成したデータセットを複数のクラスワイド画像に圧縮するために,データセット蒸留戦略を適用することを提案する。
論文 参考訳(メタデータ) (2020-05-18T09:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。