論文の概要: Long-Tailed Recognition on Binary Networks by Calibrating A Pre-trained Model
- arxiv url: http://arxiv.org/abs/2404.00285v1
- Date: Sat, 30 Mar 2024 08:37:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 04:30:18.849102
- Title: Long-Tailed Recognition on Binary Networks by Calibrating A Pre-trained Model
- Title(参考訳): 事前学習モデルの校正による二元ネットワーク上の長期音声認識
- Authors: Jihun Kim, Dahyun Kim, Hyungrok Jung, Taeil Oh, Jonghyun Choi,
- Abstract要約: 高リソース効率のバイナリニューラルネットワークをバックボーンとして使用することで、長い尾の分布を学習するという課題に対処する。
そこで本研究では,バランスの取れたデータセットでトレーニングされた既訓練完全精度モデルを用いて,蒸留の教師として使用するキャリブレート・アンド・ディスティルフレームワークを提案する。
種々のデータセットをより一般化するために,目的関数の項間の新たな対角バランスと,効率的な多分解能学習手法を提案する。
- 参考スコア(独自算出の注目度): 18.58663937035378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying deep models in real-world scenarios entails a number of challenges, including computational efficiency and real-world (e.g., long-tailed) data distributions. We address the combined challenge of learning long-tailed distributions using highly resource-efficient binary neural networks as backbones. Specifically, we propose a calibrate-and-distill framework that uses off-the-shelf pretrained full-precision models trained on balanced datasets to use as teachers for distillation when learning binary networks on long-tailed datasets. To better generalize to various datasets, we further propose a novel adversarial balancing among the terms in the objective function and an efficient multiresolution learning scheme. We conducted the largest empirical study in the literature using 15 datasets, including newly derived long-tailed datasets from existing balanced datasets, and show that our proposed method outperforms prior art by large margins (>14.33% on average).
- Abstract(参考訳): 現実世界のシナリオにディープモデルをデプロイするには、計算効率や実世界の(例えば、長い尾を持つ)データ分散など、多くの課題が伴う。
高リソース効率のバイナリニューラルネットワークをバックボーンとして使用することで、長い尾の分布を学習するという課題に対処する。
具体的には、バランスの取れたデータセットでトレーニングされた既訓練完全精度モデルを用いて、長い尾のデータセット上でバイナリネットワークを学習する際の蒸留の教師として使用するキャリブレート・アンド・ディスティルフレームワークを提案する。
種々のデータセットをより一般化するために,目的関数の項間の新たな対角バランスと,効率的な多分解能学習手法を提案する。
本稿では,既存のバランスの取れたデータセットから新たに抽出した長い尾のデータセットを含む15のデータセットを用いて,文献中で最大の実証研究を行い,提案手法が先行技術より優れていることを示す(平均14.33%)。
関連論文リスト
- Adapt-$\infty$: Scalable Lifelong Multimodal Instruction Tuning via Dynamic Data Selection [89.42023974249122]
Adapt-$infty$は、Lifelong Instruction Tuningの新しいマルチウェイおよびアダプティブデータ選択アプローチである。
勾配に基づくサンプルベクトルをグループ化して擬似スキルクラスタを構築する。
セレクタエキスパートのプールから各スキルクラスタの最高のパフォーマンスデータセレクタを選択する。
論文 参考訳(メタデータ) (2024-10-14T15:48:09Z) - Group Distributionally Robust Dataset Distillation with Risk
Minimization [18.07189444450016]
本稿では,クラスタリングとリスク尺度の最小化を組み合わせ,DDを遂行する損失を最小化するアルゴリズムを提案する。
数値実験により,その有効一般化と部分群間のロバスト性を示す。
論文 参考訳(メタデータ) (2024-02-07T09:03:04Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Exploring Data Redundancy in Real-world Image Classification through
Data Selection [20.389636181891515]
ディープラーニングモデルはトレーニングに大量のデータを必要とすることが多く、結果としてコストが増大する。
実世界の画像データの冗長性を調べるために,シナプスインテリジェンスと勾配ノルムに基づく2つのデータ評価指標を提案する。
オンラインおよびオフラインのデータ選択アルゴリズムは、検査されたデータ値に基づいてクラスタリングとグループ化によって提案される。
論文 参考訳(メタデータ) (2023-06-25T03:31:05Z) - Dataset Distillation by Matching Training Trajectories [75.9031209877651]
そこで本研究では,実データと同じような状態にネットワークを誘導するために,蒸留データを最適化する新しい定式化を提案する。
ネットワークが与えられたら、蒸留データを何回か繰り返して訓練し、合成訓練されたパラメータと実データで訓練されたパラメータとの距離に関して蒸留データを最適化する。
本手法は既存の手法よりも優れており,高解像度の視覚データを蒸留することができる。
論文 参考訳(メタデータ) (2022-03-22T17:58:59Z) - Deep Learning with Multiple Data Set: A Weighted Goal Programming
Approach [2.7393821783237184]
大規模データ分析は、我々の社会でデータが増大するにつれて、指数的な速度で成長している。
ディープラーニングモデルはたくさんのリソースを必要とし、分散トレーニングが必要です。
本稿では,分散学習のためのマルチ基準アプローチを提案する。
論文 参考訳(メタデータ) (2021-11-27T07:10:25Z) - Class Balancing GAN with a Classifier in the Loop [58.29090045399214]
本稿では,GANを学習するための理論的動機付けクラスバランス正則化器を提案する。
我々の正規化器は、訓練済みの分類器からの知識を利用して、データセット内のすべてのクラスのバランスの取れた学習を確実にします。
複数のデータセットにまたがる既存手法よりも優れた性能を達成し,長期分布の学習表現における正規化器の有用性を実証する。
論文 参考訳(メタデータ) (2021-06-17T11:41:30Z) - Deep Structure Learning using Feature Extraction in Trained Projection
Space [0.0]
我々は、低次元空間における畳み込みによる特徴抽出を可能にするために、Randon-transform(線形データ投影)の自己調整およびデータ依存バージョンを用いてネットワークアーキテクチャを導入する。
PiNetという名前のフレームワークは、エンドツーエンドでトレーニングでき、ボリュームセグメンテーションタスクで有望なパフォーマンスを示す。
論文 参考訳(メタデータ) (2020-09-01T12:16:55Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z) - DeGAN : Data-Enriching GAN for Retrieving Representative Samples from a
Trained Classifier [58.979104709647295]
我々は、トレーニングされたネットワークの将来の学習タスクのために、利用可能なデータの豊富さと関連するデータの欠如の間のギャップを埋める。
利用可能なデータは、元のトレーニングデータセットまたは関連するドメインデータセットの不均衡なサブセットである可能性があるため、代表サンプルを検索するために使用します。
関連ドメインからのデータを活用して最先端のパフォーマンスを実現することを実証する。
論文 参考訳(メタデータ) (2019-12-27T02:05:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。