Data Anomaly Detection for Structural Health Monitoring of Bridges using
Shapelet Transform
- URL: http://arxiv.org/abs/2009.00470v2
- Date: Mon, 18 Oct 2021 19:50:12 GMT
- Title: Data Anomaly Detection for Structural Health Monitoring of Bridges using
Shapelet Transform
- Authors: Monica Arul and Ahsan Kareem
- Abstract summary: A number of Structural Health Monitoring (SHM) systems are deployed to monitor civil infrastructure.
The data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors.
This paper proposes the use of a relatively new time series representation named Shapelet Transform to autonomously identify anomalies in SHM data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: With the wider availability of sensor technology, a number of Structural
Health Monitoring (SHM) systems are deployed to monitor civil infrastructure.
The continuous monitoring provides valuable information about the structure
that can help in providing a decision support system for retrofits and other
structural modifications. However, when the sensors are exposed to harsh
environmental conditions, the data measured by the SHM systems tend to be
affected by multiple anomalies caused by faulty or broken sensors. Given a
deluge of high-dimensional data collected continuously over time, research into
using machine learning methods to detect anomalies are a topic of great
interest to the SHM community. This paper contributes to this effort by
proposing the use of a relatively new time series representation named Shapelet
Transform in combination with a Random Forest classifier to autonomously
identify anomalies in SHM data. The shapelet transform is a unique time series
representation that is solely based on the shape of the time series data. In
consideration of the individual characteristics unique to every anomaly, the
application of this transform yields a new shape-based feature representation
that can be combined with any standard machine learning algorithm to detect
anomalous data with no manual intervention. For the present study, the anomaly
detection framework consists of three steps: identifying unique shapes from
anomalous data, using these shapes to transform the SHM data into a local-shape
space and training machine learning algorithm on this transformed data to
identify anomalies. The efficacy of this method is demonstrated by the
identification of anomalies in acceleration data from a SHM system installed on
a long-span bridge in China. The results show that multiple data anomalies in
SHM data can be automatically detected with high accuracy using the proposed
method.
Related papers
- DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
We present DeepHYDRA (Deep Hybrid DBSCAN/Reduction-Based Anomaly Detection)
It combines DBSCAN and learning-based anomaly detection.
It is shown to reliably detect different types of anomalies in both large and complex datasets.
arXiv Detail & Related papers (2024-05-13T13:47:15Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - DDMT: Denoising Diffusion Mask Transformer Models for Multivariate Time
Series Anomaly Detection [0.0]
We introduce a novel Adaptive Dynamic Neighbor Mask (ADNM) mechanism and integrate it with the Transformer and Denoising Diffusion Model.
The ADNM module is introduced to mitigate information leakage between input and output features during data reconstruction.
The Denoising Diffusion Transformer (DDT) employs the Transformer as an internal neural network structure for Denoising Diffusion Model.
arXiv Detail & Related papers (2023-10-13T01:18:41Z) - AnomalyBERT: Self-Supervised Transformer for Time Series Anomaly
Detection using Data Degradation Scheme [0.7216399430290167]
Anomaly detection task for time series, especially for unlabeled data, has been a challenging problem.
We address it by applying a suitable data degradation scheme to self-supervised model training.
Inspired by the self-attention mechanism, we design a Transformer-based architecture to recognize the temporal context.
arXiv Detail & Related papers (2023-05-08T05:42:24Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals [10.866594993485226]
We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
arXiv Detail & Related papers (2021-07-27T06:48:20Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Anomaly Detection using Deep Autoencoders for in-situ Wastewater Systems
Monitoring Data [0.0]
This paper proposes an anomaly detection method based on a deep autoencoder for in-situ wastewater systems monitoring data.
Anomaly detection is then performed based on the reconstruction error of the decoding stage.
arXiv Detail & Related papers (2020-02-07T09:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.