Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals
- URL: http://arxiv.org/abs/2107.12626v1
- Date: Tue, 27 Jul 2021 06:48:20 GMT
- Title: Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals
- Authors: Yuxin Zhang, Yiqiang Chen, Jindong Wang, Zhiwen Pan
- Abstract summary: We propose a novel deep learning-based anomaly detection algorithm called Deep Convolutional Autoencoding Memory network (CAE-M)
We first build a Deep Convolutional Autoencoder to characterize spatial dependence of multi-sensor data with a Maximum Mean Discrepancy (MMD)
Then, we construct a Memory Network consisting of linear (Autoregressive Model) and non-linear predictions (Bigressive LSTM with Attention) to capture temporal dependence from time-series data.
- Score: 10.866594993485226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays, multi-sensor technologies are applied in many fields, e.g., Health
Care (HC), Human Activity Recognition (HAR), and Industrial Control System
(ICS). These sensors can generate a substantial amount of multivariate
time-series data. Unsupervised anomaly detection on multi-sensor time-series
data has been proven critical in machine learning researches. The key challenge
is to discover generalized normal patterns by capturing spatial-temporal
correlation in multi-sensor data. Beyond this challenge, the noisy data is
often intertwined with the training data, which is likely to mislead the model
by making it hard to distinguish between the normal, abnormal, and noisy data.
Few of previous researches can jointly address these two challenges. In this
paper, we propose a novel deep learning-based anomaly detection algorithm
called Deep Convolutional Autoencoding Memory network (CAE-M). We first build a
Deep Convolutional Autoencoder to characterize spatial dependence of
multi-sensor data with a Maximum Mean Discrepancy (MMD) to better distinguish
between the noisy, normal, and abnormal data. Then, we construct a Memory
Network consisting of linear (Autoregressive Model) and non-linear predictions
(Bidirectional LSTM with Attention) to capture temporal dependence from
time-series data. Finally, CAE-M jointly optimizes these two subnetworks. We
empirically compare the proposed approach with several state-of-the-art anomaly
detection methods on HAR and HC datasets. Experimental results demonstrate that
our proposed model outperforms these existing methods.
Related papers
- DeepHYDRA: Resource-Efficient Time-Series Anomaly Detection in Dynamically-Configured Systems [3.44012349879073]
We present DeepHYDRA (Deep Hybrid DBSCAN/Reduction-Based Anomaly Detection)
It combines DBSCAN and learning-based anomaly detection.
It is shown to reliably detect different types of anomalies in both large and complex datasets.
arXiv Detail & Related papers (2024-05-13T13:47:15Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Coupled Attention Networks for Multivariate Time Series Anomaly
Detection [10.620044922371177]
We propose a coupled attention-based neural network framework (CAN) for anomaly detection in multivariate time series data.
To capture inter-sensor relationships and temporal dependencies, a convolutional neural network based on the global-local graph is integrated with a temporal self-attention module.
arXiv Detail & Related papers (2023-06-12T13:42:56Z) - DTAAD: Dual Tcn-Attention Networks for Anomaly Detection in Multivariate Time Series Data [0.0]
We propose an anomaly detection and diagnosis model, DTAAD, based on Transformer and Dual Temporal Convolutional Network (TCN)
scaling methods and feedback mechanisms are introduced to improve prediction accuracy and expand correlation differences.
Our experiments on seven public datasets validate that DTAAD exceeds the majority of currently advanced baseline methods in both detection and diagnostic performance.
arXiv Detail & Related papers (2023-02-17T06:59:45Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - Federated Variational Learning for Anomaly Detection in Multivariate
Time Series [13.328883578980237]
We propose an unsupervised time series anomaly detection framework in a federated fashion.
We leave the training data distributed at the edge to learn a shared Variational Autoencoder (VAE) based on Convolutional Gated Recurrent Unit (ConvGRU) model.
Experiments on three real-world networked sensor datasets illustrate the advantage of our approach over other state-of-the-art models.
arXiv Detail & Related papers (2021-08-18T22:23:15Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Data Anomaly Detection for Structural Health Monitoring of Bridges using
Shapelet Transform [0.0]
A number of Structural Health Monitoring (SHM) systems are deployed to monitor civil infrastructure.
The data measured by the SHM systems tend to be affected by multiple anomalies caused by faulty or broken sensors.
This paper proposes the use of a relatively new time series representation named Shapelet Transform to autonomously identify anomalies in SHM data.
arXiv Detail & Related papers (2020-08-31T01:11:04Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.