Operational vs Convolutional Neural Networks for Image Denoising
- URL: http://arxiv.org/abs/2009.00612v1
- Date: Tue, 1 Sep 2020 12:15:28 GMT
- Title: Operational vs Convolutional Neural Networks for Image Denoising
- Authors: Junaid Malik, Serkan Kiranyaz, Moncef Gabbouj
- Abstract summary: Convolutional Neural Networks (CNNs) have recently become a favored technique for image denoising due to its adaptive learning ability.
We propose a heterogeneous network model which allows greater flexibility for embedding additional non-linearity at the core of the data transformation.
An extensive set of comparative evaluations of ONNs and CNNs over two severe image denoising problems yield conclusive evidence that ONNs enriched by non-linear operators can achieve a superior denoising performance against CNNs with both equivalent and well-known deep configurations.
- Score: 25.838282412957675
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Convolutional Neural Networks (CNNs) have recently become a favored technique
for image denoising due to its adaptive learning ability, especially with a
deep configuration. However, their efficacy is inherently limited owing to
their homogenous network formation with the unique use of linear convolution.
In this study, we propose a heterogeneous network model which allows greater
flexibility for embedding additional non-linearity at the core of the data
transformation. To this end, we propose the idea of an operational neuron or
Operational Neural Networks (ONN), which enables a flexible non-linear and
heterogeneous configuration employing both inter and intra-layer neuronal
diversity. Furthermore, we propose a robust operator search strategy inspired
by the Hebbian theory, called the Synaptic Plasticity Monitoring (SPM) which
can make data-driven choices for non-linearities in any architecture. An
extensive set of comparative evaluations of ONNs and CNNs over two severe image
denoising problems yield conclusive evidence that ONNs enriched by non-linear
operators can achieve a superior denoising performance against CNNs with both
equivalent and well-known deep configurations.
Related papers
- Defending Spiking Neural Networks against Adversarial Attacks through Image Purification [20.492531851480784]
Spiking Neural Networks (SNNs) aim to bridge the gap between neuroscience and machine learning.
SNNs are vulnerable to adversarial attacks like convolutional neural networks.
We propose a biologically inspired methodology to enhance the robustness of SNNs.
arXiv Detail & Related papers (2024-04-26T00:57:06Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - From Alexnet to Transformers: Measuring the Non-linearity of Deep Neural Networks with Affine Optimal Transport [32.39176908225668]
We introduce the concept of the non-linearity signature of DNN, the first theoretically sound solution for measuring the non-linearity of deep neural networks.
We provide extensive experimental results that highlight the practical usefulness of the proposed non-linearity signature.
arXiv Detail & Related papers (2023-10-17T17:50:22Z) - Signal Processing for Implicit Neural Representations [80.38097216996164]
Implicit Neural Representations (INRs) encode continuous multi-media data via multi-layer perceptrons.
Existing works manipulate such continuous representations via processing on their discretized instance.
We propose an implicit neural signal processing network, dubbed INSP-Net, via differential operators on INR.
arXiv Detail & Related papers (2022-10-17T06:29:07Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Image denoising by Super Neurons: Why go deep? [31.087153520130112]
We investigate the use of super neurons for both synthetic and real-world image denoising.
Our results demonstrate that with the same width and depth, Self-ONNs with super neurons provide a significant boost of denoising performance.
arXiv Detail & Related papers (2021-11-29T20:52:10Z) - Convolutional versus Self-Organized Operational Neural Networks for
Real-World Blind Image Denoising [25.31981236136533]
We tackle the real-world blind image denoising problem by employing, for the first time, a deep Self-ONN.
Deep Self-ONNs consistently achieve superior results with performance gains of up to 1.76dB in PSNR.
arXiv Detail & Related papers (2021-03-04T14:49:17Z) - Self-Organized Operational Neural Networks for Severe Image Restoration
Problems [25.838282412957675]
Discnative learning based on convolutional neural networks (CNNs) aims to perform image restoration by learning from training examples of noisy-clean image pairs.
We claim that this is due to the inherent linear nature of convolution-based transformation, which is inadequate for handling severe restoration problems.
We propose a self-organizing variant of ONNs, Self-ONNs, for image restoration, which synthesizes novel nodal transformations onthe-fly.
arXiv Detail & Related papers (2020-08-29T02:19:41Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z) - Self-Organized Operational Neural Networks with Generative Neurons [87.32169414230822]
ONNs are heterogenous networks with a generalized neuron model that can encapsulate any set of non-linear operators.
We propose Self-organized ONNs (Self-ONNs) with generative neurons that have the ability to adapt (optimize) the nodal operator of each connection.
arXiv Detail & Related papers (2020-04-24T14:37:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.