Convolutional versus Self-Organized Operational Neural Networks for
Real-World Blind Image Denoising
- URL: http://arxiv.org/abs/2103.03070v1
- Date: Thu, 4 Mar 2021 14:49:17 GMT
- Title: Convolutional versus Self-Organized Operational Neural Networks for
Real-World Blind Image Denoising
- Authors: Junaid Malik, Serkan Kiranyaz, Mehmet Yamac, Esin Guldogan, Moncef
Gabbouj
- Abstract summary: We tackle the real-world blind image denoising problem by employing, for the first time, a deep Self-ONN.
Deep Self-ONNs consistently achieve superior results with performance gains of up to 1.76dB in PSNR.
- Score: 25.31981236136533
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Real-world blind denoising poses a unique image restoration challenge due to
the non-deterministic nature of the underlying noise distribution. Prevalent
discriminative networks trained on synthetic noise models have been shown to
generalize poorly to real-world noisy images. While curating real-world noisy
images and improving ground truth estimation procedures remain key points of
interest, a potential research direction is to explore extensions to the widely
used convolutional neuron model to enable better generalization with fewer data
and lower network complexity, as opposed to simply using deeper Convolutional
Neural Networks (CNNs). Operational Neural Networks (ONNs) and their recent
variant, Self-organized ONNs (Self-ONNs), propose to embed enhanced
non-linearity into the neuron model and have been shown to outperform CNNs
across a variety of regression tasks. However, all such comparisons have been
made for compact networks and the efficacy of deploying operational layers as a
drop-in replacement for convolutional layers in contemporary deep architectures
remains to be seen. In this work, we tackle the real-world blind image
denoising problem by employing, for the first time, a deep Self-ONN. Extensive
quantitative and qualitative evaluations spanning multiple metrics and four
high-resolution real-world noisy image datasets against the state-of-the-art
deep CNN network, DnCNN, reveal that deep Self-ONNs consistently achieve
superior results with performance gains of up to 1.76dB in PSNR. Furthermore,
Self-ONNs with half and even quarter the number of layers that require only a
fraction of computational resources as that of DnCNN can still achieve similar
or better results compared to the state-of-the-art.
Related papers
- Defending Spiking Neural Networks against Adversarial Attacks through Image Purification [20.492531851480784]
Spiking Neural Networks (SNNs) aim to bridge the gap between neuroscience and machine learning.
SNNs are vulnerable to adversarial attacks like convolutional neural networks.
We propose a biologically inspired methodology to enhance the robustness of SNNs.
arXiv Detail & Related papers (2024-04-26T00:57:06Z) - Unsupervised Denoising of Optical Coherence Tomography Images with
Dual_Merged CycleWGAN [3.3909577600092122]
We propose a new Cycle-Consistent Generative Adversarial Nets called Dual-Merged Cycle-WGAN for retinal OCT image denoiseing.
Our model consists of two Cycle-GAN networks with imporved generator, descriminator and wasserstein loss to achieve good training stability and better performance.
arXiv Detail & Related papers (2022-05-02T07:38:19Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - Image denoising by Super Neurons: Why go deep? [31.087153520130112]
We investigate the use of super neurons for both synthetic and real-world image denoising.
Our results demonstrate that with the same width and depth, Self-ONNs with super neurons provide a significant boost of denoising performance.
arXiv Detail & Related papers (2021-11-29T20:52:10Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
We present a deep interleaved network (DIN) that learns how information at different states should be combined for high-quality (HQ) images reconstruction.
In this paper, we propose asymmetric co-attention (AsyCA) which is attached at each interleaved node to model the feature dependencies.
Our presented DIN can be trained end-to-end and applied to various image restoration tasks.
arXiv Detail & Related papers (2020-10-29T15:32:00Z) - Operational vs Convolutional Neural Networks for Image Denoising [25.838282412957675]
Convolutional Neural Networks (CNNs) have recently become a favored technique for image denoising due to its adaptive learning ability.
We propose a heterogeneous network model which allows greater flexibility for embedding additional non-linearity at the core of the data transformation.
An extensive set of comparative evaluations of ONNs and CNNs over two severe image denoising problems yield conclusive evidence that ONNs enriched by non-linear operators can achieve a superior denoising performance against CNNs with both equivalent and well-known deep configurations.
arXiv Detail & Related papers (2020-09-01T12:15:28Z) - Self-Organized Operational Neural Networks for Severe Image Restoration
Problems [25.838282412957675]
Discnative learning based on convolutional neural networks (CNNs) aims to perform image restoration by learning from training examples of noisy-clean image pairs.
We claim that this is due to the inherent linear nature of convolution-based transformation, which is inadequate for handling severe restoration problems.
We propose a self-organizing variant of ONNs, Self-ONNs, for image restoration, which synthesizes novel nodal transformations onthe-fly.
arXiv Detail & Related papers (2020-08-29T02:19:41Z) - Exploiting Heterogeneity in Operational Neural Networks by Synaptic
Plasticity [87.32169414230822]
Recently proposed network model, Operational Neural Networks (ONNs), can generalize the conventional Convolutional Neural Networks (CNNs)
In this study the focus is drawn on searching the best-possible operator set(s) for the hidden neurons of the network based on the Synaptic Plasticity paradigm that poses the essential learning theory in biological neurons.
Experimental results over highly challenging problems demonstrate that the elite ONNs even with few neurons and layers can achieve a superior learning performance than GIS-based ONNs.
arXiv Detail & Related papers (2020-08-21T19:03:23Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
Single image super-resolution (SISR) has been greatly revitalized by the recent development of convolutional neural networks (CNN)
This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization.
A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization.
arXiv Detail & Related papers (2020-05-20T11:11:47Z) - Identity Enhanced Residual Image Denoising [61.75610647978973]
We learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules and residual on the residual architecture for image denoising.
The proposed network produces remarkably higher numerical accuracy and better visual image quality than the classical state-of-the-art and CNN algorithms.
arXiv Detail & Related papers (2020-04-26T04:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.