Travel time prediction for congested freeways with a dynamic linear
model
- URL: http://arxiv.org/abs/2009.01016v1
- Date: Wed, 2 Sep 2020 12:48:06 GMT
- Title: Travel time prediction for congested freeways with a dynamic linear
model
- Authors: Semin Kwak and Nikolas Geroliminis
- Abstract summary: We propose to use dynamic linear models (DLMs) to approximate the non-linear traffic states.
We show significant improvements in the accuracy, especially for short-term prediction.
- Score: 10.965065178451104
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of travel time is an essential feature to support
Intelligent Transportation Systems (ITS). The non-linearity of traffic states,
however, makes this prediction a challenging task. Here we propose to use
dynamic linear models (DLMs) to approximate the non-linear traffic states.
Unlike a static linear regression model, the DLMs assume that their parameters
are changing across time. We design a DLM with model parameters defined at each
time unit to describe the spatio-temporal characteristics of time-series
traffic data. Based on our DLM and its model parameters analytically trained
using historical data, we suggest an optimal linear predictor in the minimum
mean square error (MMSE) sense. We compare our prediction accuracy of travel
time for freeways in California (I210-E and I5-S) under highly congested
traffic conditions with those of other methods: the instantaneous travel time,
k-nearest neighbor, support vector regression, and artificial neural network.
We show significant improvements in the accuracy, especially for short-term
prediction.
Related papers
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.
We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.
We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - ST-Mamba: Spatial-Temporal Selective State Space Model for Traffic Flow Prediction [32.44888387725925]
The proposed ST-Mamba model is first to leverage the power of spatial-temporal learning in traffic flow prediction without using graph modeling.
The proposed ST-Mamba model achieves a 61.11% improvement in computational speed and increases prediction accuracy by 0.67%.
Experiments with real-world traffic datasets demonstrate that the textsfST-Mamba model sets a new benchmark in traffic flow prediction.
arXiv Detail & Related papers (2024-04-20T03:57:57Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Newell's theory based feature transformations for spatio-temporal
traffic prediction [0.0]
We propose a traffic flow physics-based transformation feature for Deep learning (DL) models for traffic flow forecasting.
This transformation incorporates Newell's uncongested and congested filters of traffic flows at the target locations, enabling the models to learn broader dynamics of the system.
An important advantage of our framework is its ability to be transferred to new locations where data is unavailable.
arXiv Detail & Related papers (2023-07-12T06:31:43Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
This paper proposes a traffic propagation model that merges multiple heat diffusion kernels into a data-driven prediction model to forecast traffic signals.
We optimize the model parameters using Bayesian inference to minimize the prediction errors and, consequently, determine the mixing ratio of the two approaches.
The proposed model demonstrates prediction accuracy comparable to that of the state-of-the-art deep neural networks with lower computational effort.
arXiv Detail & Related papers (2021-04-27T18:17:42Z) - An Effective Dynamic Spatio-temporal Framework with Multi-Source
Information for Traffic Prediction [0.22940141855172028]
The proposed model improves the prediction precision by approximately 3-7 percent on the NYC-Taxi and NYC-Bike datasets.
The experimental results show that the proposed model improves the prediction precision by approximately 3-7 percent on the NYC-Taxi and NYC-Bike datasets.
arXiv Detail & Related papers (2020-05-08T14:23:52Z) - Neural Networks Model for Travel Time Prediction Based on ODTravel Time
Matrix [0.0]
Two neural network models namely multi-layer(MLP) perceptron and long short-term model(LSTM) are developed for predicting link travel time of a busy route.
The experiment result showed that both models can make near-accurate predictions however, LSTM is more susceptible to noise as time step increases.
arXiv Detail & Related papers (2020-04-08T15:01:13Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.