論文の概要: Generalisation of Cyberbullying Detection
- arxiv url: http://arxiv.org/abs/2009.01046v1
- Date: Tue, 1 Sep 2020 14:57:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 00:26:37.681935
- Title: Generalisation of Cyberbullying Detection
- Title(参考訳): サイバーいじめ検出の一般化
- Authors: Khoury Richard and Larochelle Marc-Andr\'e
- Abstract要約: 我々は,サイバーいじめ行動の定義の多様性と,これらの差異が1つの分類器の他のコミュニティへの移植性に与える影響について検討する。
これらの分類器を組み合わせたアンサンブルモデルの研究は、相互にどのように相互作用するかを理解するのに役立ちます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyberbullying is a problem in today's ubiquitous online communities.
Filtering it out of online conversations has proven a challenge, and efforts
have led to the creation of many different datasets, all offered as resources
to train classifiers. Through these datasets, we will explore the variety of
definitions of cyberbullying behaviors and the impact of these differences on
the portability of one classifier to another community. By analyzing the
similarities between datasets, we also gain insight on the generalization power
of the classifiers trained from them. A study of ensemble models combining
these classifiers will help us understand how they interact with each other.
- Abstract(参考訳): サイバーいじめは、今日のユビキタスオンラインコミュニティで問題となっている。
オンライン会話からそれをフィルタリングすることは困難であることが証明され、さまざまなデータセットが作成され、すべて分類器を訓練するためのリソースとして提供されている。
これらのデータセットを通じて、サイバーいじめ行動の定義の多様性と、その違いが別のコミュニティへの分類器の移植性に与える影響について検討する。
また,データセット間の類似性を解析することにより,学習した分類器の一般化能力について考察する。
これらの分類器を組み合わせたアンサンブルモデルの研究は、相互にどのように相互作用するかを理解するのに役立ちます。
関連論文リスト
- A Multi-faceted Semi-Synthetic Dataset for Automated Cyberbullying
Detection [0.0]
本稿では,広範な半合成サイバーバブルデータセットについて述べる。
攻撃性、反復性、対人関係、害の意図など、サイバーいじめの本質的な側面をすべて取り入れている。
この付随するデータ記事では、データセットを詳細に見て、透明性を高め、レプリケーションを可能にする。
論文 参考訳(メタデータ) (2024-02-09T16:53:19Z) - Explain Thyself Bully: Sentiment Aided Cyberbullying Detection with
Explanation [52.3781496277104]
さまざまなソーシャルメディアネットワークやオンラインコミュニケーションアプリの人気により、サイバーいじめが大きな問題になっている。
一般データ保護規則の「説明の権利」のような近年の法律は、解釈可能なモデルの開発に拍車をかけた。
我々は,コード混在言語からの自動サイバーバブル検出のための,mExCBと呼ばれる最初の解釈可能なマルチタスクモデルを開発した。
論文 参考訳(メタデータ) (2024-01-17T07:36:22Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
1つのオフラインデータセットから2つの異なるモデルを別々に学習することで、探索と表現の学習を改善することができることを示す。
ノイズコントラスト推定と補助報酬モデルを用いて状態表現を学習することで、挑戦的なNetHackベンチマークのサンプル効率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-03-31T18:03:30Z) - Session-based Cyberbullying Detection in Social Media: A Survey [16.39344929765961]
問題のさまざまなステップと課題をカプセル化したセッションベースのサイバーバブル検出フレームワークを定義します。
我々は,セッションベースのサイバーいじめデータセットを作成するための一連のベストプラクティスのエビデンスベースの基準を提案する。
論文 参考訳(メタデータ) (2022-07-14T18:56:54Z) - Initial Study into Application of Feature Density and
Linguistically-backed Embedding to Improve Machine Learning-based
Cyberbullying Detection [54.83707803301847]
この研究は、自動サイバーバブル検出に関するKaggleコンペティションで提供されたFormspringデータセットで実施された。
本研究は,サイバブリング検出におけるニューラルネットワークの有効性と分類器性能と特徴密度の相関性を確認した。
論文 参考訳(メタデータ) (2022-06-04T03:17:15Z) - Competing Mutual Information Constraints with Stochastic
Competition-based Activations for Learning Diversified Representations [5.981521556433909]
本研究は,多角化表現の学習における長年の課題に対処することを目的としている。
情報理論の議論と競争に基づくアクティベーションを組み合わせる。
実験的に示すように、結果として得られるネットワークは、重要な離散表現学習能力をもたらす。
論文 参考訳(メタデータ) (2022-01-10T20:12:13Z) - Detecting adversaries in Crowdsourcing [71.20185379303479]
本研究は, クラウドソース型分類における敵の影響を, 人気のダウィド・アンド・スケネモデルを用いて検討する。
敵は、クラウドソーシングモデルから任意に逸脱することを許され、潜在的に協力する可能性がある。
我々は,アノテータ応答の2次モーメント構造を利用して,多数の敵を識別し,クラウドソーシングタスクへの影響を軽減するアプローチを開発した。
論文 参考訳(メタデータ) (2021-10-07T15:07:07Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - HENIN: Learning Heterogeneous Neural Interaction Networks for
Explainable Cyberbullying Detection on Social Media [11.443698975923176]
本稿では,サイバーバブル検出のための新しいディープモデルであるヘテロジニアス・ニューラル・インタラクション・ネットワーク(HENIN)を提案する。
HENINには、コメントエンコーダ、コミット後のコアテンションサブネットワーク、セッションセッションとポストのインタラクション抽出器が含まれる。
論文 参考訳(メタデータ) (2020-10-09T13:44:34Z) - Aggressive, Repetitive, Intentional, Visible, and Imbalanced: Refining
Representations for Cyberbullying Classification [4.945634077636197]
本研究では,その社会的・言語的側面を表現するために,5つの明確な要因を用いて,サイバーいじめのニュアンスな問題を考察する。
これらの結果は、サイバーいじめを社会現象として表現し、モデル化することの重要性を示している。
論文 参考訳(メタデータ) (2020-04-04T00:35:16Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
我々は、異なるソーシャルネットワークのマルチモーダルデータから学習する際、異なる機械学習モデルの性能について検討する。
最初の実験結果から,ソーシャルネットワークの選択がパフォーマンスに影響を及ぼすことが明らかとなった。
論文 参考訳(メタデータ) (2020-02-05T11:10:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。