Clustering of Nonnegative Data and an Application to Matrix Completion
- URL: http://arxiv.org/abs/2009.01279v1
- Date: Wed, 2 Sep 2020 18:24:47 GMT
- Title: Clustering of Nonnegative Data and an Application to Matrix Completion
- Authors: C. Strohmeier, D. Needell
- Abstract summary: We analyze its performance in relation to a certain measure of correlation between said subspaces.
We use our clustering algorithm to develop a matrix completion algorithm which can outperform standard matrix completion algorithms on data matrices satisfying certain natural conditions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a simple algorithm to cluster nonnegative data
lying in disjoint subspaces. We analyze its performance in relation to a
certain measure of correlation between said subspaces. We use our clustering
algorithm to develop a matrix completion algorithm which can outperform
standard matrix completion algorithms on data matrices satisfying certain
natural conditions.
Related papers
- Clustering Three-Way Data with Outliers [1.0435741631709405]
An approach for clustering matrix-variate normal data with outliers is discussed.
The approach, which uses the distribution of subset log-likelihoods, extends the OCLUST algorithm and uses an iterative approach to detect and trim outliers.
arXiv Detail & Related papers (2023-10-08T21:27:29Z) - Learning idempotent representation for subspace clustering [7.6275971668447]
An ideal reconstruction coefficient matrix should have two properties: 1) it is block diagonal with each block indicating a subspace; 2) each block is fully connected.
We devise an idempotent representation (IDR) algorithm to pursue reconstruction coefficient matrices approximating normalized membership matrices.
Experiments conducted on both synthetic and real world datasets prove that IDR is an effective and efficient subspace clustering algorithm.
arXiv Detail & Related papers (2022-07-29T01:39:25Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
Cut-based directed graph (digraph) clustering often focuses on finding dense within-cluster or sparse between-cluster connections.
For flow-based clusterings the edges between clusters tend to be oriented in one direction and have been found in migration data, food webs, and trade data.
arXiv Detail & Related papers (2022-03-02T20:07:04Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
We consider an adversarially-trained version of the nonnegative matrix factorization.
In our formulation, an attacker adds an arbitrary matrix of bounded norm to the given data matrix.
We design efficient algorithms inspired by adversarial training to optimize for dictionary and coefficient matrices.
arXiv Detail & Related papers (2021-04-10T13:13:17Z) - Clustering Ensemble Meets Low-rank Tensor Approximation [50.21581880045667]
This paper explores the problem of clustering ensemble, which aims to combine multiple base clusterings to produce better performance than that of the individual one.
We propose a novel low-rank tensor approximation-based method to solve the problem from a global perspective.
Experimental results over 7 benchmark data sets show that the proposed model achieves a breakthrough in clustering performance, compared with 12 state-of-the-art methods.
arXiv Detail & Related papers (2020-12-16T13:01:37Z) - Biclustering with Alternating K-Means [5.089110111757978]
We provide a new formulation of the biclustering problem based on the idea of minimizing the empirical clustering risk.
We propose a simple and novel algorithm that finds a local minimum by alternating the use of an adapted version of the k-means clustering algorithm between columns and rows.
The results demonstrate that our algorithm is able to detect meaningful structures in the data and outperform other competing biclustering methods in various settings and situations.
arXiv Detail & Related papers (2020-09-09T20:15:24Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
arXiv Detail & Related papers (2020-01-06T23:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.