Physics-based Shading Reconstruction for Intrinsic Image Decomposition
- URL: http://arxiv.org/abs/2009.01540v1
- Date: Thu, 3 Sep 2020 09:30:17 GMT
- Title: Physics-based Shading Reconstruction for Intrinsic Image Decomposition
- Authors: Anil S. Baslamisli and Yang Liu and Sezer Karaoglu and Theo Gevers
- Abstract summary: We propose albedo and shading gradient descriptors which are derived from physics-based models.
An initial sparse shading map is calculated directly from the corresponding RGB image gradients in a learning-free unsupervised manner.
An optimization method is proposed to reconstruct the full dense shading map.
We are the first to directly address the texture and intensity ambiguity problems of the shading estimations.
- Score: 20.44458250060927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the use of photometric invariance and deep learning to compute
intrinsic images (albedo and shading). We propose albedo and shading gradient
descriptors which are derived from physics-based models. Using the descriptors,
albedo transitions are masked out and an initial sparse shading map is
calculated directly from the corresponding RGB image gradients in a
learning-free unsupervised manner. Then, an optimization method is proposed to
reconstruct the full dense shading map. Finally, we integrate the generated
shading map into a novel deep learning framework to refine it and also to
predict corresponding albedo image to achieve intrinsic image decomposition. By
doing so, we are the first to directly address the texture and intensity
ambiguity problems of the shading estimations. Large scale experiments show
that our approach steered by physics-based invariant descriptors achieve
superior results on MIT Intrinsics, NIR-RGB Intrinsics, Multi-Illuminant
Intrinsic Images, Spectral Intrinsic Images, As Realistic As Possible, and
competitive results on Intrinsic Images in the Wild datasets while achieving
state-of-the-art shading estimations.
Related papers
- DeferredGS: Decoupled and Editable Gaussian Splatting with Deferred Shading [50.331929164207324]
We introduce DeferredGS, a method for decoupling and editing the Gaussian splatting representation using deferred shading.
Both qualitative and quantitative experiments demonstrate the superior performance of DeferredGS in novel view and editing tasks.
arXiv Detail & Related papers (2024-04-15T01:58:54Z) - PIE-Net: Photometric Invariant Edge Guided Network for Intrinsic Image
Decomposition [17.008724191799313]
Intrinsic image decomposition is the process of recovering the image formation components (reflectance and shading) from an image.
In this paper, an end-to-end edge-driven hybrid CNN approach is proposed for intrinsic image decomposition.
arXiv Detail & Related papers (2022-03-30T20:46:15Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Learning Topology from Synthetic Data for Unsupervised Depth Completion [66.26787962258346]
We present a method for inferring dense depth maps from images and sparse depth measurements.
We learn the association of sparse point clouds with dense natural shapes, and using the image as evidence to validate the predicted depth map.
arXiv Detail & Related papers (2021-06-06T00:21:12Z) - An Optical physics inspired CNN approach for intrinsic image
decomposition [0.0]
Intrinsic Image Decomposition is an open problem of generating the constituents of an image.
We propose a neural network architecture capable of this decomposition using physics-based parameters derived from the image.
arXiv Detail & Related papers (2021-05-21T00:54:01Z) - Efficient and Differentiable Shadow Computation for Inverse Problems [64.70468076488419]
Differentiable geometric computation has received increasing interest for image-based inverse problems.
We propose an efficient yet efficient approach for differentiable visibility and soft shadow computation.
As our formulation is differentiable, it can be used to solve inverse problems such as texture, illumination, rigid pose, and deformation recovery from images.
arXiv Detail & Related papers (2021-04-01T09:29:05Z) - Towards Geometry Guided Neural Relighting with Flash Photography [26.511476565209026]
We propose a framework for image relighting from a single flash photograph with its corresponding depth map using deep learning.
We experimentally validate the advantage of our geometry guided approach over state-of-the-art image-based approaches in intrinsic image decomposition and image relighting.
arXiv Detail & Related papers (2020-08-12T08:03:28Z) - Understanding Integrated Gradients with SmoothTaylor for Deep Neural
Network Attribution [70.78655569298923]
Integrated Gradients as an attribution method for deep neural network models offers simple implementability.
It suffers from noisiness of explanations which affects the ease of interpretability.
The SmoothGrad technique is proposed to solve the noisiness issue and smoothen the attribution maps of any gradient-based attribution method.
arXiv Detail & Related papers (2020-04-22T10:43:19Z) - Deep CG2Real: Synthetic-to-Real Translation via Image Disentanglement [78.58603635621591]
Training an unpaired synthetic-to-real translation network in image space is severely under-constrained.
We propose a semi-supervised approach that operates on the disentangled shading and albedo layers of the image.
Our two-stage pipeline first learns to predict accurate shading in a supervised fashion using physically-based renderings as targets.
arXiv Detail & Related papers (2020-03-27T21:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.