Sample-Efficient Automated Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2009.01555v3
- Date: Wed, 17 Mar 2021 14:43:36 GMT
- Title: Sample-Efficient Automated Deep Reinforcement Learning
- Authors: J\"org K.H. Franke, Gregor K\"ohler, Andr\'e Biedenkapp, Frank Hutter
- Abstract summary: We propose a population-based automated RL framework to meta-optimize arbitrary off-policy RL algorithms.
By sharing the collected experience across the population, we substantially increase the sample efficiency of the meta-optimization.
We demonstrate the capabilities of our sample-efficient AutoRL approach in a case study with the popular TD3 algorithm in the MuJoCo benchmark suite.
- Score: 33.53903358611521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant progress in challenging problems across various domains,
applying state-of-the-art deep reinforcement learning (RL) algorithms remains
challenging due to their sensitivity to the choice of hyperparameters. This
sensitivity can partly be attributed to the non-stationarity of the RL problem,
potentially requiring different hyperparameter settings at various stages of
the learning process. Additionally, in the RL setting, hyperparameter
optimization (HPO) requires a large number of environment interactions,
hindering the transfer of the successes in RL to real-world applications. In
this work, we tackle the issues of sample-efficient and dynamic HPO in RL. We
propose a population-based automated RL (AutoRL) framework to meta-optimize
arbitrary off-policy RL algorithms. In this framework, we optimize the
hyperparameters and also the neural architecture while simultaneously training
the agent. By sharing the collected experience across the population, we
substantially increase the sample efficiency of the meta-optimization. We
demonstrate the capabilities of our sample-efficient AutoRL approach in a case
study with the popular TD3 algorithm in the MuJoCo benchmark suite, where we
reduce the number of environment interactions needed for meta-optimization by
up to an order of magnitude compared to population-based training.
Related papers
- ARLBench: Flexible and Efficient Benchmarking for Hyperparameter Optimization in Reinforcement Learning [42.33815055388433]
ARLBench is a benchmark for hyperparameter optimization (HPO) in reinforcement learning (RL)
It allows comparisons of diverse HPO approaches while being highly efficient in evaluation.
ARLBench is an efficient, flexible, and future-oriented foundation for research on AutoRL.
arXiv Detail & Related papers (2024-09-27T15:22:28Z) - A Benchmark Environment for Offline Reinforcement Learning in Racing Games [54.83171948184851]
Offline Reinforcement Learning (ORL) is a promising approach to reduce the high sample complexity of traditional Reinforcement Learning (RL)
This paper introduces OfflineMania, a novel environment for ORL research.
It is inspired by the iconic TrackMania series and developed using the Unity 3D game engine.
arXiv Detail & Related papers (2024-07-12T16:44:03Z) - Adaptive $Q$-Network: On-the-fly Target Selection for Deep Reinforcement Learning [18.579378919155864]
We propose Adaptive $Q$Network (AdaQN) to take into account the non-stationarity of the optimization procedure without requiring additional samples.
AdaQN is theoretically sound and empirically validate it in MuJoCo control problems and Atari $2600 games.
arXiv Detail & Related papers (2024-05-25T11:57:43Z) - Stochastic Q-learning for Large Discrete Action Spaces [79.1700188160944]
In complex environments with discrete action spaces, effective decision-making is critical in reinforcement learning (RL)
We present value-based RL approaches which, as opposed to optimizing over the entire set of $n$ actions, only consider a variable set of actions, possibly as small as $mathcalO(log(n)$)$.
The presented value-based RL methods include, among others, Q-learning, StochDQN, StochDDQN, all of which integrate this approach for both value-function updates and action selection.
arXiv Detail & Related papers (2024-05-16T17:58:44Z) - AutoRL Hyperparameter Landscapes [69.15927869840918]
Reinforcement Learning (RL) has shown to be capable of producing impressive results, but its use is limited by the impact of its hyperparameters on performance.
We propose an approach to build and analyze these hyperparameter landscapes not just for one point in time but at multiple points in time throughout training.
This supports the theory that hyperparameters should be dynamically adjusted during training and shows the potential for more insights on AutoRL problems that can be gained through landscape analyses.
arXiv Detail & Related papers (2023-04-05T12:14:41Z) - Auto-FedRL: Federated Hyperparameter Optimization for
Multi-institutional Medical Image Segmentation [48.821062916381685]
Federated learning (FL) is a distributed machine learning technique that enables collaborative model training while avoiding explicit data sharing.
In this work, we propose an efficient reinforcement learning(RL)-based federated hyperparameter optimization algorithm, termed Auto-FedRL.
The effectiveness of the proposed method is validated on a heterogeneous data split of the CIFAR-10 dataset and two real-world medical image segmentation datasets.
arXiv Detail & Related papers (2022-03-12T04:11:42Z) - Hyperparameter Tuning for Deep Reinforcement Learning Applications [0.3553493344868413]
We propose a distributed variable-length genetic algorithm framework to tune hyperparameters for various RL applications.
Our results show that with more generations, optimal solutions that require fewer training episodes and are computationally cheap while being more robust for deployment.
arXiv Detail & Related papers (2022-01-26T20:43:13Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z) - On the Importance of Hyperparameter Optimization for Model-based
Reinforcement Learning [27.36718899899319]
Model-based Reinforcement Learning (MBRL) is a promising framework for learning control in a data-efficient manner.
MBRL typically requires significant human expertise before it can be applied to new problems and domains.
arXiv Detail & Related papers (2021-02-26T18:57:47Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.