Hyperparameter Tuning for Deep Reinforcement Learning Applications
- URL: http://arxiv.org/abs/2201.11182v1
- Date: Wed, 26 Jan 2022 20:43:13 GMT
- Title: Hyperparameter Tuning for Deep Reinforcement Learning Applications
- Authors: Mariam Kiran and Melis Ozyildirim
- Abstract summary: We propose a distributed variable-length genetic algorithm framework to tune hyperparameters for various RL applications.
Our results show that with more generations, optimal solutions that require fewer training episodes and are computationally cheap while being more robust for deployment.
- Score: 0.3553493344868413
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) applications, where an agent can simply learn
optimal behaviors by interacting with the environment, are quickly gaining
tremendous success in a wide variety of applications from controlling simple
pendulums to complex data centers. However, setting the right hyperparameters
can have a huge impact on the deployed solution performance and reliability in
the inference models, produced via RL, used for decision-making. Hyperparameter
search itself is a laborious process that requires many iterations and
computationally expensive to find the best settings that produce the best
neural network architectures. In comparison to other neural network
architectures, deep RL has not witnessed much hyperparameter tuning, due to its
algorithm complexity and simulation platforms needed. In this paper, we propose
a distributed variable-length genetic algorithm framework to systematically
tune hyperparameters for various RL applications, improving training time and
robustness of the architecture, via evolution. We demonstrate the scalability
of our approach on many RL problems (from simple gyms to complex applications)
and compared with Bayesian approach. Our results show that with more
generations, optimal solutions that require fewer training episodes and are
computationally cheap while being more robust for deployment. Our results are
imperative to advance deep reinforcement learning controllers for real-world
problems.
Related papers
- Adaptive $Q$-Network: On-the-fly Target Selection for Deep Reinforcement Learning [18.579378919155864]
We propose Adaptive $Q$Network (AdaQN) to take into account the non-stationarity of the optimization procedure without requiring additional samples.
AdaQN is theoretically sound and empirically validate it in MuJoCo control problems and Atari $2600 games.
arXiv Detail & Related papers (2024-05-25T11:57:43Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
Training a high-quality deep neural network requires choosing suitable hyperparameters, which is a non-trivial and expensive process.
In this work, we precisely characterize the dependence of initializations and maximal learning rates on the network architecture.
We demonstrate that network rankings can be easily changed by better training networks in benchmarks.
arXiv Detail & Related papers (2024-02-27T11:52:49Z) - A Framework for History-Aware Hyperparameter Optimisation in
Reinforcement Learning [8.659973888018781]
A Reinforcement Learning (RL) system depends on a set of initial conditions that affect the system's performance.
We propose a framework based on integrating complex event processing and temporal models, to alleviate these trade-offs.
We tested the proposed approach in a 5G mobile communications case study that uses DQN, a variant of RL, for its decision-making.
arXiv Detail & Related papers (2023-03-09T11:30:40Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Mastering the Unsupervised Reinforcement Learning Benchmark from Pixels [112.63440666617494]
Reinforcement learning algorithms can succeed but require large amounts of interactions between the agent and the environment.
We propose a new method to solve it, using unsupervised model-based RL, for pre-training the agent.
We show robust performance on the Real-Word RL benchmark, hinting at resiliency to environment perturbations during adaptation.
arXiv Detail & Related papers (2022-09-24T14:22:29Z) - Automating DBSCAN via Deep Reinforcement Learning [73.82740568765279]
We propose a novel Deep Reinforcement Learning guided automatic DBSCAN parameters search framework, namely DRL-DBSCAN.
The framework models the process of adjusting the parameter search direction by perceiving the clustering environment as a Markov decision process.
The framework consistently improves DBSCAN clustering accuracy by up to 26% and 25% respectively.
arXiv Detail & Related papers (2022-08-09T04:40:11Z) - Bayesian Generational Population-Based Training [35.70338636901159]
Population-Based Training (PBT) has led to impressive performance in several large scale settings.
We introduce two new innovations in PBT-style methods.
We show that these innovations lead to large performance gains.
arXiv Detail & Related papers (2022-07-19T16:57:38Z) - RL-DARTS: Differentiable Architecture Search for Reinforcement Learning [62.95469460505922]
We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL)
By replacing the image encoder with a DARTS supernet, our search method is sample-efficient, requires minimal extra compute resources, and is also compatible with off-policy and on-policy RL algorithms, needing only minor changes in preexisting code.
We show that the supernet gradually learns better cells, leading to alternative architectures which can be highly competitive against manually designed policies, but also verify previous design choices for RL policies.
arXiv Detail & Related papers (2021-06-04T03:08:43Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z) - On the Importance of Hyperparameter Optimization for Model-based
Reinforcement Learning [27.36718899899319]
Model-based Reinforcement Learning (MBRL) is a promising framework for learning control in a data-efficient manner.
MBRL typically requires significant human expertise before it can be applied to new problems and domains.
arXiv Detail & Related papers (2021-02-26T18:57:47Z) - Sample-Efficient Automated Deep Reinforcement Learning [33.53903358611521]
We propose a population-based automated RL framework to meta-optimize arbitrary off-policy RL algorithms.
By sharing the collected experience across the population, we substantially increase the sample efficiency of the meta-optimization.
We demonstrate the capabilities of our sample-efficient AutoRL approach in a case study with the popular TD3 algorithm in the MuJoCo benchmark suite.
arXiv Detail & Related papers (2020-09-03T10:04:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.