Multi-Loss Weighting with Coefficient of Variations
- URL: http://arxiv.org/abs/2009.01717v2
- Date: Tue, 10 Nov 2020 10:41:03 GMT
- Title: Multi-Loss Weighting with Coefficient of Variations
- Authors: Rick Groenendijk, Sezer Karaoglu, Theo Gevers, Thomas Mensink
- Abstract summary: We propose a weighting scheme based on the coefficient of variations and set the weights based on properties observed while training the model.
The proposed method incorporates a measure of uncertainty to balance the losses, and as a result the loss weights evolve during training without requiring another (learning based) optimisation.
The validity of the approach is shown empirically for depth estimation and semantic segmentation on multiple datasets.
- Score: 19.37721431024278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many interesting tasks in machine learning and computer vision are learned by
optimising an objective function defined as a weighted linear combination of
multiple losses. The final performance is sensitive to choosing the correct
(relative) weights for these losses. Finding a good set of weights is often
done by adopting them into the set of hyper-parameters, which are set using an
extensive grid search. This is computationally expensive. In this paper, we
propose a weighting scheme based on the coefficient of variations and set the
weights based on properties observed while training the model. The proposed
method incorporates a measure of uncertainty to balance the losses, and as a
result the loss weights evolve during training without requiring another
(learning based) optimisation. In contrast to many loss weighting methods in
literature, we focus on single-task multi-loss problems, such as monocular
depth estimation and semantic segmentation, and show that multi-task approaches
for loss weighting do not work on those single-tasks. The validity of the
approach is shown empirically for depth estimation and semantic segmentation on
multiple datasets.
Related papers
- Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning [8.493889694402478]
Key challenge in multi-task learning (MTL) is balancing individual task losses during neural network training to improve performance and efficiency.
We propose a novel task-weighting method by building on the most prevalent approach of Uncertainty Weighting.
Our approach yields comparable results to the analyticallyly prohibitive, brute-force approach of Scalarization.
arXiv Detail & Related papers (2024-08-15T07:10:17Z) - Scalarization for Multi-Task and Multi-Domain Learning at Scale [15.545810422759295]
Training a single model on multiple input domains and/or output tasks allows for compressing information from multiple sources into a unified backbone.
However, optimizing such networks is a challenge due to discrepancies between the different tasks or domains.
arXiv Detail & Related papers (2023-10-13T07:31:04Z) - Pruning Small Pre-Trained Weights Irreversibly and Monotonically Impairs
"Difficult" Downstream Tasks in LLMs [71.56345106591789]
It has been believed that weights in large language models (LLMs) contain significant redundancy.
This paper presents a counter-argument: small-magnitude weights of pre-trained model weights encode vital knowledge essential for tackling difficult downstream tasks.
arXiv Detail & Related papers (2023-09-29T22:55:06Z) - Learning to Re-weight Examples with Optimal Transport for Imbalanced
Classification [74.62203971625173]
Imbalanced data pose challenges for deep learning based classification models.
One of the most widely-used approaches for tackling imbalanced data is re-weighting.
We propose a novel re-weighting method based on optimal transport (OT) from a distributional point of view.
arXiv Detail & Related papers (2022-08-05T01:23:54Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Dynamic Multi-Scale Loss Optimization for Object Detection [14.256807110937622]
We study the objective imbalance of multi-scale detector training.
We propose an Adaptive Variance Weighting (AVW) to balance multi-scale loss according to the statistical variance.
We develop a novel Reinforcement Learning Optimization (RLO) to decide the weighting scheme probabilistically during training.
arXiv Detail & Related papers (2021-08-09T13:12:41Z) - Rethinking Deep Contrastive Learning with Embedding Memory [58.66613563148031]
Pair-wise loss functions have been extensively studied and shown to continuously improve the performance of deep metric learning (DML)
We provide a new methodology for systematically studying weighting strategies of various pair-wise loss functions, and rethink pair weighting with an embedding memory.
arXiv Detail & Related papers (2021-03-25T17:39:34Z) - Learning a Unified Sample Weighting Network for Object Detection [113.98404690619982]
Region sampling or weighting is significantly important to the success of modern region-based object detectors.
We argue that sample weighting should be data-dependent and task-dependent.
We propose a unified sample weighting network to predict a sample's task weights.
arXiv Detail & Related papers (2020-06-11T16:19:16Z) - Continual Learning using a Bayesian Nonparametric Dictionary of Weight
Factors [75.58555462743585]
Naively trained neural networks tend to experience catastrophic forgetting in sequential task settings.
We propose a principled nonparametric approach based on the Indian Buffet Process (IBP) prior, letting the data determine how much to expand the model complexity.
We demonstrate the effectiveness of our method on a number of continual learning benchmarks and analyze how weight factors are allocated and reused throughout the training.
arXiv Detail & Related papers (2020-04-21T15:20:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.