Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning
- URL: http://arxiv.org/abs/2408.07985v1
- Date: Thu, 15 Aug 2024 07:10:17 GMT
- Title: Analytical Uncertainty-Based Loss Weighting in Multi-Task Learning
- Authors: Lukas Kirchdorfer, Cathrin Elich, Simon Kutsche, Heiner Stuckenschmidt, Lukas Schott, Jan M. Köhler,
- Abstract summary: Key challenge in multi-task learning (MTL) is balancing individual task losses during neural network training to improve performance and efficiency.
We propose a novel task-weighting method by building on the most prevalent approach of Uncertainty Weighting.
Our approach yields comparable results to the analyticallyly prohibitive, brute-force approach of Scalarization.
- Score: 8.493889694402478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of neural networks in various domains, multi-task learning (MTL) gained significant relevance. A key challenge in MTL is balancing individual task losses during neural network training to improve performance and efficiency through knowledge sharing across tasks. To address these challenges, we propose a novel task-weighting method by building on the most prevalent approach of Uncertainty Weighting and computing analytically optimal uncertainty-based weights, normalized by a softmax function with tunable temperature. Our approach yields comparable results to the combinatorially prohibitive, brute-force approach of Scalarization while offering a more cost-effective yet high-performing alternative. We conduct an extensive benchmark on various datasets and architectures. Our method consistently outperforms six other common weighting methods. Furthermore, we report noteworthy experimental findings for the practical application of MTL. For example, larger networks diminish the influence of weighting methods, and tuning the weight decay has a low impact compared to the learning rate.
Related papers
- Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
In this paper, we focus on the aforementioned efficiency aspects of existing MTL methods.
We first carry out large-scale experiments of the methods with smaller backbones and on a the MetaGraspNet dataset as a new test ground.
We also propose Feature Disentanglement measure as a novel and efficient identifier of the challenges in MTL.
arXiv Detail & Related papers (2024-02-05T22:15:55Z) - Robust Multi-Task Learning with Excess Risks [24.695243608197835]
Multi-task learning (MTL) considers learning a joint model for multiple tasks by optimizing a convex combination of all task losses.
Existing methods use an adaptive weight updating scheme, where task weights are dynamically adjusted based on their respective losses to prioritize difficult tasks.
We propose Multi-Task Learning with Excess Risks (ExcessMTL), an excess risk-based task balancing method that updates the task weights by their distances to convergence.
arXiv Detail & Related papers (2024-02-03T03:46:14Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context learning (ICL) has become an efficient approach propelled by the recent advancements in large language models (LLMs)
However, both paradigms are prone to suffer from the critical problem of overconfidence (i.e., miscalibration)
arXiv Detail & Related papers (2023-12-21T11:55:10Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Improving Multi-task Learning via Seeking Task-based Flat Regions [43.85516379095757]
Multi-Task Learning (MTL) is a powerful learning paradigm for training deep neural networks that allows learning more than one objective by a single backbone.
There is an emerging line of work in MTL that focuses on manipulating the task gradient to derive an ultimate gradient descent direction.
We propose to leverage a recently introduced training method, named Sharpness-aware Minimization, which can enhance model generalization ability on single-task learning.
arXiv Detail & Related papers (2022-11-24T17:19:30Z) - SLAW: Scaled Loss Approximate Weighting for Efficient Multi-Task
Learning [0.0]
Multi-task learning (MTL) is a subfield of machine learning with important applications.
The best MTL optimization methods require individually computing the gradient of each task's loss function.
We propose Scaled Loss Approximate Weighting (SLAW), a method for multi-task optimization that matches the performance of the best existing methods while being much more efficient.
arXiv Detail & Related papers (2021-09-16T20:58:40Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z) - Multi-Loss Weighting with Coefficient of Variations [19.37721431024278]
We propose a weighting scheme based on the coefficient of variations and set the weights based on properties observed while training the model.
The proposed method incorporates a measure of uncertainty to balance the losses, and as a result the loss weights evolve during training without requiring another (learning based) optimisation.
The validity of the approach is shown empirically for depth estimation and semantic segmentation on multiple datasets.
arXiv Detail & Related papers (2020-09-03T14:51:19Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.