論文の概要: Sparse Meta Networks for Sequential Adaptation and its Application to
Adaptive Language Modelling
- arxiv url: http://arxiv.org/abs/2009.01803v1
- Date: Thu, 3 Sep 2020 17:06:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 06:51:46.782880
- Title: Sparse Meta Networks for Sequential Adaptation and its Application to
Adaptive Language Modelling
- Title(参考訳): 逐次適応のためのスパースメタネットワークとその適応型言語モデリングへの応用
- Authors: Tsendsuren Munkhdalai
- Abstract要約: Sparse Meta Networksは、ディープニューラルネットワークのオンラインシーケンシャル適応アルゴリズムを学習するためのメタ学習アプローチである。
層固有の高速メモリでディープニューラルネットワークを強化する。
様々な逐次適応シナリオにおいて高い性能を示す。
- 参考スコア(独自算出の注目度): 7.859988850911321
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training a deep neural network requires a large amount of single-task data
and involves a long time-consuming optimization phase. This is not scalable to
complex, realistic environments with new unexpected changes. Humans can perform
fast incremental learning on the fly and memory systems in the brain play a
critical role. We introduce Sparse Meta Networks -- a meta-learning approach to
learn online sequential adaptation algorithms for deep neural networks, by
using deep neural networks. We augment a deep neural network with a
layer-specific fast-weight memory. The fast-weights are generated sparsely at
each time step and accumulated incrementally through time providing a useful
inductive bias for online continual adaptation. We demonstrate strong
performance on a variety of sequential adaptation scenarios, from a simple
online reinforcement learning to a large scale adaptive language modelling.
- Abstract(参考訳): ディープニューラルネットワークのトレーニングには、大量のシングルタスクデータが必要で、長時間の最適化フェーズが伴う。
これは、新しい予期せぬ変化を伴う、複雑で現実的な環境にスケーラブルではない。
人間はハエで素早くインクリメンタルな学習をすることができ、脳内の記憶システムが重要な役割を果たす。
ディープニューラルネットワークを用いて,ディープニューラルネットワークのオンラインシーケンシャル適応アルゴリズムを学習するメタラーニング手法である,スパースメタネットワークを紹介する。
我々は層特異的な高速なメモリでディープニューラルネットワークを補強する。
高速ウェイトは各段階ごとに緩やかに生成され、徐々に蓄積され、オンライン連続適応に有用な帰納バイアスを提供する。
簡単なオンライン強化学習から大規模適応型言語モデリングまで,さまざまな逐次適応シナリオにおいて高い性能を示す。
関連論文リスト
- Peer-to-Peer Learning Dynamics of Wide Neural Networks [10.179711440042123]
我々は,一般的なDGDアルゴリズムを用いて学習した広範ニューラルネットワークの学習力学を,明示的で非漸近的に特徴づける。
我々は,誤りや誤りを正確に予測し,分析結果を検証した。
論文 参考訳(メタデータ) (2024-09-23T17:57:58Z) - Improving the Trainability of Deep Neural Networks through Layerwise
Batch-Entropy Regularization [1.3999481573773072]
ニューラルネットワークの各層を通しての情報の流れを定量化するバッチエントロピーを導入,評価する。
損失関数にバッチエントロピー正規化項を追加するだけで、500層からなる「バニラ」完全連結ネットワークと畳み込みニューラルネットワークをトレーニングできることが示される。
論文 参考訳(メタデータ) (2022-08-01T20:31:58Z) - Learning to Modulate Random Weights: Neuromodulation-inspired Neural
Networks For Efficient Continual Learning [1.9580473532948401]
生体神経系における神経調節にインスパイアされた新しいニューラルネットワークアーキテクチャを導入する。
学習可能なパラメータが極めて少ないにもかかわらず,本手法はタスク毎の学習性能が極めて高いことを示す。
論文 参考訳(メタデータ) (2022-04-08T21:12:13Z) - Learning Fast and Slow for Online Time Series Forecasting [76.50127663309604]
Fast and Slow Learning Networks (FSNet)は、オンライン時系列予測のための総合的なフレームワークである。
FSNetは、最近の変更への迅速な適応と、同様の古い知識の取得のバランスを取る。
私たちのコードは公開されます。
論文 参考訳(メタデータ) (2022-02-23T18:23:07Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
大規模検索空間を対象とした進化グラフ強化学習(EGRL)を提案する。
我々は、推論のために、Intel NNP-Iチップ上で、我々のアプローチを直接訓練し、検証する。
また,NNP-Iコンパイラと比較して28~78%の高速化を実現している。
論文 参考訳(メタデータ) (2020-07-14T18:50:12Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Adaptive Reinforcement Learning through Evolving Self-Modifying Neural
Networks [0.0]
強化学習(RL)の現在の手法は、特定の時間間隔で反射した後にのみ新しい相互作用に適応する。
最近の研究は、バックプロパゲーションを用いて訓練された単純なRLタスクの性能を向上させるために、ニューラルネットワークに神経修飾塑性を付与することでこの問題に対処している。
ここでは,四足歩行におけるメタラーニングの課題について検討する。
その結果、自己修飾プラスチックネットワークを用いて進化したエージェントは、複雑なメタ学習タスクに適応し、グラデーションを使って更新された同じネットワークよりも優れていることが示される。
論文 参考訳(メタデータ) (2020-05-22T02:24:44Z) - The large learning rate phase of deep learning: the catapult mechanism [50.23041928811575]
問題解決可能なトレーニングダイナミクスを備えたニューラルネットワークのクラスを提示する。
現実的なディープラーニング環境において,モデルの予測とトレーニングのダイナミクスとの間には,よい一致がある。
我々の結果は、異なる学習率でトレーニングされたモデルの特性に光を当てたと信じています。
論文 参考訳(メタデータ) (2020-03-04T17:52:48Z) - Side-Tuning: A Baseline for Network Adaptation via Additive Side
Networks [95.51368472949308]
適応は、トレーニングデータが少ない場合や、ネットワークのプリエンプションをエンコードしたい場合などに有効である。
本稿では,サイドチューニングという簡単な方法を提案する。
論文 参考訳(メタデータ) (2019-12-31T18:52:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。