論文の概要: Peer-to-Peer Learning Dynamics of Wide Neural Networks
- arxiv url: http://arxiv.org/abs/2409.15267v1
- Date: Mon, 23 Sep 2024 17:57:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-26 13:43:14.915940
- Title: Peer-to-Peer Learning Dynamics of Wide Neural Networks
- Title(参考訳): 広域ニューラルネットワークのピアツーピア学習ダイナミクス
- Authors: Shreyas Chaudhari, Srinivasa Pranav, Emile Anand, José M. F. Moura,
- Abstract要約: 我々は,一般的なDGDアルゴリズムを用いて学習した広範ニューラルネットワークの学習力学を,明示的で非漸近的に特徴づける。
我々は,誤りや誤りを正確に予測し,分析結果を検証した。
- 参考スコア(独自算出の注目度): 10.179711440042123
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Peer-to-peer learning is an increasingly popular framework that enables beyond-5G distributed edge devices to collaboratively train deep neural networks in a privacy-preserving manner without the aid of a central server. Neural network training algorithms for emerging environments, e.g., smart cities, have many design considerations that are difficult to tune in deployment settings -- such as neural network architectures and hyperparameters. This presents a critical need for characterizing the training dynamics of distributed optimization algorithms used to train highly nonconvex neural networks in peer-to-peer learning environments. In this work, we provide an explicit, non-asymptotic characterization of the learning dynamics of wide neural networks trained using popular distributed gradient descent (DGD) algorithms. Our results leverage both recent advancements in neural tangent kernel (NTK) theory and extensive previous work on distributed learning and consensus. We validate our analytical results by accurately predicting the parameter and error dynamics of wide neural networks trained for classification tasks.
- Abstract(参考訳): Peer-to-peer Learningは、5Gを超える分散エッジデバイスで、中央サーバの助けなしに、プライバシー保護の方法でディープニューラルネットワークを協調的にトレーニングすることを可能にする、人気の高いフレームワークである。
スマートシティなど、新興環境のためのニューラルネットワークトレーニングアルゴリズムには、ニューラルネットワークアーキテクチャやハイパーパラメータなど、デプロイメント設定のチューニングが難しい多くの設計上の考慮事項がある。
これにより、ピアツーピア学習環境において、高非凸ニューラルネットワークのトレーニングに使用される分散最適化アルゴリズムのトレーニングダイナミクスを特徴づける上で、重要なニーズが提示される。
本研究では,一般的な分散勾配降下法(DGD)アルゴリズムを用いて学習した広帯域ニューラルネットワークの学習力学の,明示的で非漸近的な特徴付けを行う。
本研究は,ニューラル・タンジェント・カーネル(NTK)理論の最近の進歩と,分散学習とコンセンサスに関する広範な研究の両面を生かしたものである。
分類タスクのために訓練された広いニューラルネットワークのパラメータとエラーダイナミクスを正確に予測し,解析結果を検証する。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Enhanced quantum state preparation via stochastic prediction of neural
network [0.8287206589886881]
本稿では,ニューラルネットワークの知識盲点を生かして,アルゴリズムの有効性を高めるための興味深い道を探る。
本手法は,半導体ダブル量子ドットシステムにおける任意の量子状態の生成に使用される機械学習アルゴリズムを中心にしている。
ニューラルネットワークが生成した予測を活用することにより、最適化プロセスの導出により、局所最適化を回避できる。
論文 参考訳(メタデータ) (2023-07-27T09:11:53Z) - Neural Network Pruning as Spectrum Preserving Process [7.386663473785839]
行列スペクトル学習とニューラルネットワーク学習の密集層と畳み込み層との密接な関係を同定する。
本稿では,ニューラルネットワークのプルーニングに適した行列スペーシフィケーションアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-18T05:39:32Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Stochastic Neural Networks with Infinite Width are Deterministic [7.07065078444922]
使用中のニューラルネットワークの主要なタイプであるニューラルネットワークについて研究する。
最適化されたニューラルネットワークの幅が無限大になる傾向があるため、トレーニングセットの予測分散はゼロになる。
論文 参考訳(メタデータ) (2022-01-30T04:52:31Z) - Neural Capacitance: A New Perspective of Neural Network Selection via
Edge Dynamics [85.31710759801705]
現在の実践は、性能予測のためのモデルトレーニングにおいて高価な計算コストを必要とする。
本稿では,学習中のシナプス接続(エッジ)上の制御ダイナミクスを解析し,ニューラルネットワーク選択のための新しいフレームワークを提案する。
我々のフレームワークは、ニューラルネットワークトレーニング中のバックプロパゲーションがシナプス接続の動的進化と等価であるという事実に基づいて構築されている。
論文 参考訳(メタデータ) (2022-01-11T20:53:15Z) - Characterizing Learning Dynamics of Deep Neural Networks via Complex
Networks [1.0869257688521987]
複素ネットワーク理論(CNT)は、ディープニューラルネットワーク(DNN)を重み付きグラフとして表現し、それらを動的システムとして研究する。
ノード/ニューロンとレイヤ、すなわちNodes StrengthとLayers Fluctuationのメトリクスを紹介します。
本フレームワークは,学習力学のトレンドを抽出し,高精度ネットワークから低次ネットワークを分離する。
論文 参考訳(メタデータ) (2021-10-06T10:03:32Z) - What can linearized neural networks actually say about generalization? [67.83999394554621]
ある無限大のニューラルネットワークにおいて、ニューラル・タンジェント・カーネル(NTK)理論は一般化を完全に特徴づける。
線形近似は、ニューラルネットワークの特定のタスクの学習複雑性を確実にランク付けできることを示す。
我々の研究は、将来の理論的研究を刺激する新しい深層学習現象の具体例を提供する。
論文 参考訳(メタデータ) (2021-06-12T13:05:11Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
本稿では,量子化ニューラルネットワークのトレーニングに適用可能な離散最適化手法であるGradient Markov Descent (SMGD)を紹介する。
アルゴリズム性能の理論的保証と数値的な結果の促進を提供する。
論文 参考訳(メタデータ) (2020-08-25T15:48:15Z) - A Hybrid Method for Training Convolutional Neural Networks [3.172761915061083]
本稿では,畳み込みニューラルネットワークの学習にバックプロパゲーションと進化戦略の両方を用いるハイブリッド手法を提案する。
画像分類のタスクにおいて,提案手法は定期的な訓練において改善可能であることを示す。
論文 参考訳(メタデータ) (2020-04-15T17:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。