論文の概要: Interactive Visual Study of Multiple Attributes Learning Model of X-Ray
Scattering Images
- arxiv url: http://arxiv.org/abs/2009.02256v1
- Date: Thu, 3 Sep 2020 00:38:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 07:25:11.635818
- Title: Interactive Visual Study of Multiple Attributes Learning Model of X-Ray
Scattering Images
- Title(参考訳): x線散乱画像の多属性学習モデルのインタラクティブな視覚的研究
- Authors: Xinyi Huang, Suphanut Jamonnak, Ye Zhao, Boyu Wang, Minh Hoai, Kevin
Yager, Wei Xu
- Abstract要約: 本稿では,X線散乱画像に適用した複数の属性学習モデルを視覚的に研究するための対話型システムを提案する。
この探索は、属性間の相互関係に関連するモデル性能の顕在化によって導かれる。
したがって、このシステムはドメインサイエンティストをサポートし、トレーニングデータセットとモデルを改善し、疑問のある属性ラベルを見つけ、外れやすい画像や素早いデータクラスタを識別する。
- 参考スコア(独自算出の注目度): 34.95218692917125
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing interactive visualization tools for deep learning are mostly applied
to the training, debugging, and refinement of neural network models working on
natural images. However, visual analytics tools are lacking for the specific
application of x-ray image classification with multiple structural attributes.
In this paper, we present an interactive system for domain scientists to
visually study the multiple attributes learning models applied to x-ray
scattering images. It allows domain scientists to interactively explore this
important type of scientific images in embedded spaces that are defined on the
model prediction output, the actual labels, and the discovered feature space of
neural networks. Users are allowed to flexibly select instance images, their
clusters, and compare them regarding the specified visual representation of
attributes. The exploration is guided by the manifestation of model performance
related to mutual relationships among attributes, which often affect the
learning accuracy and effectiveness. The system thus supports domain scientists
to improve the training dataset and model, find questionable attributes labels,
and identify outlier images or spurious data clusters. Case studies and
scientists feedback demonstrate its functionalities and usefulness.
- Abstract(参考訳): ディープラーニングのための既存のインタラクティブな視覚化ツールは、主に、自然画像を扱うニューラルネットワークモデルのトレーニング、デバッグ、洗練に適用される。
しかし、複数の構造特性を持つX線画像分類の特定の応用には視覚分析ツールがない。
本稿では,x線散乱画像に適用した複数の属性学習モデルを視覚的に研究するための対話型システムを提案する。
モデル予測出力、実際のラベル、そして発見されたニューラルネットワークの特徴空間に基づいて定義された埋め込み空間における、この重要なタイプの科学的イメージを、ドメイン科学者がインタラクティブに探索することができる。
ユーザは、インスタンスイメージとクラスタを柔軟に選択し、属性の特定のビジュアル表現について比較することができる。
この調査は、属性間の相互関係に関連するモデルパフォーマンスの顕在化によって導かれ、学習の正確性と有効性にしばしば影響を及ぼす。
したがって、このシステムはドメインサイエンティストをサポートし、トレーニングデータセットとモデルを改善し、疑問のある属性ラベルを見つけ、外れやすい画像や素早いデータクラスタを識別する。
ケーススタディと科学者のフィードバックは、その機能と有用性を示している。
関連論文リスト
- Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
人間-物体相互作用(Human-Object Interaction、HOI)は、人間と物体の相互作用を理解することを目的としている。
本稿では,仮想画像学習(Virtual Image Leaning, VIL)による不均衡分布の影響を軽減することを提案する。
ラベルからイメージへの新たなアプローチであるMultiple Steps Image Creation (MUSIC)が提案され、実際の画像と一貫した分布を持つ高品質なデータセットを作成する。
論文 参考訳(メタデータ) (2023-08-04T10:28:48Z) - Interactive Visual Feature Search [8.255656003475268]
視覚特徴探索(Visual Feature Search)は,任意のCNNに適応可能な,インタラクティブな可視化技術である。
このツールを使うと、ユーザーは画像領域をハイライトし、最もよく似たモデル機能を持つデータセットから画像を検索できる。
我々は,医療画像や野生生物の分類など,様々な応用実験を行うことで,モデル行動の異なる側面を解明する方法を実証する。
論文 参考訳(メタデータ) (2022-11-28T04:39:03Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
ニューラルネットワークのトレーニングに属性マップを利用すると、モデルの正規化が向上し、性能が向上することを示す。
特に、我々の汎用的なドメインに依存しないアプローチは、ビジョン、自然言語処理、時系列タスクにおける最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2022-05-30T13:34:46Z) - Learning multi-scale functional representations of proteins from
single-cell microscopy data [77.34726150561087]
局所化分類に基づいて訓練された単純な畳み込みネットワークは、多様な機能情報をカプセル化したタンパク質表現を学習できることを示す。
また,生物機能の異なるスケールでタンパク質表現の質を評価するためのロバストな評価戦略を提案する。
論文 参考訳(メタデータ) (2022-05-24T00:00:07Z) - Attribute Prototype Network for Any-Shot Learning [113.50220968583353]
属性ローカライズ機能を統合した画像表現は、任意のショット、すなわちゼロショットと少数ショットのイメージ分類タスクに有用である、と我々は主張する。
クラスレベルの属性のみを用いてグローバルな特徴とローカルな特徴を共同で学習する新しい表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-04T02:25:40Z) - Self-supervised Contrastive Learning for Cross-domain Hyperspectral
Image Representation [26.610588734000316]
本稿では,アノテートが本質的に困難であるハイパースペクトル画像に適した自己教師型学習フレームワークを提案する。
提案するフレームワークアーキテクチャは、クロスドメインCNNを利用して、異なるハイパースペクトル画像から表現を学習する。
実験結果は、スクラッチや他の移動学習法から学習したモデルに対して、提案した自己教師型表現の利点を示す。
論文 参考訳(メタデータ) (2022-02-08T16:16:45Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - DoFE: Domain-oriented Feature Embedding for Generalizable Fundus Image
Segmentation on Unseen Datasets [96.92018649136217]
対象ドメインに対するCNNの一般化能力を向上させるために,新しいドメイン指向特徴埋め込み(DoFE)フレームワークを提案する。
私たちのDoFEフレームワークは、マルチソースドメインから学んだ追加のドメイン事前知識で、画像機能を動的に強化します。
本フレームワークは、未確認データセットのセグメンテーション結果を満足して生成し、他の領域の一般化やネットワークの正規化手法を超越する。
論文 参考訳(メタデータ) (2020-10-13T07:28:39Z) - Graph Neural Networks for UnsupervisedDomain Adaptation of
Histopathological ImageAnalytics [22.04114134677181]
組織像解析のための教師なし領域適応のための新しい手法を提案する。
特徴空間に画像を埋め込むバックボーンと、ラベルで画像の監視信号をプロパゲートするグラフニューラルネットワーク層に基づいている。
実験では、4つの公開データセット上での最先端のパフォーマンスを評価する。
論文 参考訳(メタデータ) (2020-08-21T04:53:44Z) - Unsupervised Domain Attention Adaptation Network for Caricature
Attribute Recognition [23.95731281719786]
キャラクチュア属性は、心理学と神経科学の研究に役立つ特徴的な顔の特徴を提供する。
注釈付き画像の量を持つ顔写真属性データセットとは異なり、似顔絵属性のアノテーションは稀である。
本稿では,画像の属性学習のための特徴属性データセットであるWebCariAを提案する。
論文 参考訳(メタデータ) (2020-07-18T06:38:45Z) - FDive: Learning Relevance Models using Pattern-based Similarity Measures [27.136998442865217]
FDiveは視覚的に探索可能な関連モデルの作成を支援する視覚的能動学習システムである。
最適な類似度尺度に基づいて、インタラクティブな自己組織化マップベースの関連モデルを算出する。
また、その正確性を改善するために、さらに関連性フィードバックを自動で促す。
論文 参考訳(メタデータ) (2019-07-29T15:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。