論文の概要: AnyDB: An Architecture-less DBMS for Any Workload
- arxiv url: http://arxiv.org/abs/2009.02258v1
- Date: Fri, 4 Sep 2020 15:38:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 02:28:12.817348
- Title: AnyDB: An Architecture-less DBMS for Any Workload
- Title(参考訳): AnyDB: あらゆるワークロードのためのアーキテクチャレスDBMS
- Authors: Tiemo Bang (Technical University Darmstadt and SAP SE), Norman May
(SAP SE), Ilia Petrov (Reutlingen University), Carsten Binnig (Technical
University Darmstadt)
- Abstract要約: 共有なしアーキテクチャのようなアーキテクチャモデルをハードベーキングする代わりに、私たちはいわゆるアーキテクチャレスの新しいクラスを目指しています。
最初の結果は、アーキテクチャレスのAnyDBが、さまざまなワークロードにわたって、大幅なスピードアップを提供できることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose a radical new approach for scale-out distributed
DBMSs. Instead of hard-baking an architectural model, such as a shared-nothing
architecture, into the distributed DBMS design, we aim for a new class of
so-called architecture-less DBMSs. The main idea is that an architecture-less
DBMS can mimic any architecture on a per-query basis on-the-fly without any
additional overhead for reconfiguration. Our initial results show that our
architecture-less DBMS AnyDB can provide significant speed-ups across varying
workloads compared to a traditional DBMS implementing a static architecture.
- Abstract(参考訳): 本稿では,分散DBMSのスケールアウトに対する根本的アプローチを提案する。
共有ナッシングアーキテクチャのようなアーキテクチャモデルを分散DBMS設計にハードベーキングするのではなく、アーキテクチャレスDBMSと呼ばれる新しいタイプのクラスを目指しています。
アーキテクチャのないDBMSは、再設定に余分なオーバーヘッドを伴わずに、クエリごとのアーキテクチャを模倣することができる。
私たちのアーキテクチャレスDBMS AnyDBは、従来のDBMSが静的アーキテクチャを実装しているのに対して、さまざまなワークロード間で大幅なスピードアップを提供することができます。
関連論文リスト
- Software Architecture Recovery with Information Fusion [14.537490019685384]
本稿では,完全に自動化されたアーキテクチャ復元手法であるSARIFを提案する。
依存関係、コードテキスト、フォルダ構造を含む3種類の包括的な情報が含まれている。
SARIFは従来の技術よりも36.1%正確である。
論文 参考訳(メタデータ) (2023-11-08T12:35:37Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
リレーショナルデータ上での深層学習(DL)モデルの実現は、様々な商業分野や科学分野において重要な要件となっている。
最先端のDL中心アーキテクチャは、DL計算を専用のDLフレームワークにオフロードします。
UDF中心アーキテクチャの可能性は、リレーショナルデータベース管理システム(RDBMS)内の1つ以上のテンソル計算をユーザ定義関数(UDF)にカプセル化する。
論文 参考訳(メタデータ) (2023-10-07T06:01:35Z) - Enhancing Architecture Frameworks by Including Modern Stakeholders and their Views/Viewpoints [48.87872564630711]
データサイエンスと機械学習に関連する関心事、例えばデータサイエンティストやデータエンジニアの利害関係者は、まだ既存のアーキテクチャフレームワークには含まれていない。
10か国25以上の組織から61名の被験者を対象に調査を行った。
論文 参考訳(メタデータ) (2023-08-09T21:54:34Z) - Visual Analysis of Neural Architecture Spaces for Summarizing Design
Principles [22.66053583920441]
ArchExplorerは、ニューラルネットワーク空間を理解し、設計原則を要約するための視覚分析手法である。
クラスタ間のグローバルな関係と各クラスタ内のアーキテクチャの局所的近傍の両方を伝達するために,サークルパッキングに基づくアーキテクチャ視覚化が開発された。
設計原則を要約し,優れたアーキテクチャを選択する上でArchExplorerの有効性を示すために,2つのケーススタディとポストアナリシスが提示される。
論文 参考訳(メタデータ) (2022-08-20T12:15:59Z) - Federated Learning with Heterogeneous Architectures using Graph
HyperNetworks [154.60662664160333]
パラメータ共有にグラフハイパーネットワークを採用することにより、異種クライアントアーキテクチャに対応する新しいFLフレームワークを提案する。
既存のソリューションとは異なり、当社のフレームワークは、クライアントが同じアーキテクチャタイプを共有することを制限せず、外部データも使用せず、クライアントがモデルアーキテクチャを公開する必要もありません。
論文 参考訳(メタデータ) (2022-01-20T21:36:25Z) - Rethinking Architecture Selection in Differentiable NAS [74.61723678821049]
微分可能なニューラルアーキテクチャ探索は、その探索効率と簡易性において最も人気のあるNAS手法の1つである。
本稿では,各操作がスーパーネットに与える影響を直接測定する摂動に基づくアーキテクチャ選択を提案する。
提案手法により,DARTSの故障モードを大幅に緩和できることがわかった。
論文 参考訳(メタデータ) (2021-08-10T00:53:39Z) - Revisiting Deep Learning Models for Tabular Data [40.67427600770095]
研究者と実践者の両方にとって、どのモデルが優れているかは定かではない。
ひとつはResNetのようなアーキテクチャで、以前の作業でしばしば欠落する強力なベースラインであることが分かりました。
第2のモデルは、表データに対するTransformerアーキテクチャの簡単な適応であり、ほとんどのタスクにおいて他のソリューションよりも優れています。
論文 参考訳(メタデータ) (2021-06-22T17:58:10Z) - MetaPerturb: Transferable Regularizer for Heterogeneous Tasks and
Architectures [61.73533544385352]
本稿ではメタパーターブ(MetaPerturb)というトランスファー可能な摂動モデルを提案する。
MetaPerturbは、レイヤやタスクにまたがる多様な分散を訓練したセット関数であるため、異種タスクやアーキテクチャを一般化することができる。
論文 参考訳(メタデータ) (2020-06-13T02:54:59Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
ResNetやNASNetのような現代の畳み込みネットワークは、多くのコンピュータビジョンアプリケーションで最先端の結果を得た。
これらのネットワークは、同じ解像度で表現を操作するレイヤのセットであるステージで構成されている。
各ステージにおけるレイヤー数の増加はネットワークの予測能力を向上させることが示されている。
しかし、結果として得られるアーキテクチャは、浮動小数点演算、メモリ要求、推論時間の観点から計算的に高価になる。
論文 参考訳(メタデータ) (2020-04-23T14:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。