論文の概要: EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition
- arxiv url: http://arxiv.org/abs/2409.14432v1
- Date: Sun, 22 Sep 2024 13:11:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 22:41:53.238216
- Title: EM-DARTS: Hierarchical Differentiable Architecture Search for Eye Movement Recognition
- Title(参考訳): EM-DARTS:眼球運動認識のための階層的微分可能なアーキテクチャ探索
- Authors: Huafeng Qin, Hongyu Zhu, Xin Jin, Xin Yu, Mounim A. El-Yacoubi, Xinbo Gao,
- Abstract要約: 眼球運動バイオメトリックスは、高い安全性の識別により注目されている。
深層学習(DL)モデルは近年,眼球運動認識に成功している。
DLアーキテクチャはまだ人間の事前知識によって決定されている。
眼球運動認識のためのDLアーキテクチャを自動設計する階層的微分可能なアーキテクチャ探索アルゴリズムEM-DARTSを提案する。
- 参考スコア(独自算出の注目度): 54.99121380536659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Eye movement biometrics has received increasing attention thanks to its high secure identification. Although deep learning (DL) models have been recently successfully applied for eye movement recognition, the DL architecture still is determined by human prior knowledge. Differentiable Neural Architecture Search (DARTS) automates the manual process of architecture design with high search efficiency. DARTS, however, usually stacks the same multiple learned cells to form a final neural network for evaluation, limiting therefore the diversity of the network. Incidentally, DARTS usually searches the architecture in a shallow network while evaluating it in a deeper one, which results in a large gap between the architecture depths in the search and evaluation scenarios. To address this issue, we propose EM-DARTS, a hierarchical differentiable architecture search algorithm to automatically design the DL architecture for eye movement recognition. First, we define a supernet and propose a global and local alternate Neural Architecture Search method to search the optimal architecture alternately with an differentiable neural architecture search. The local search strategy aims to find an optimal architecture for different cells while the global search strategy is responsible for optimizing the architecture of the target network. To further reduce redundancy, a transfer entropy is proposed to compute the information amount of each layer, so as to further simplify search network. Our experiments on three public databases demonstrate that the proposed EM-DARTS is capable of producing an optimal architecture that leads to state-of-the-art recognition performance.
- Abstract(参考訳): アイムーブメントバイオメトリクスは、高いセキュアな識別によって注目を集めている。
近年, 深層学習(DL)モデルが眼球運動認識に成功しているが, DLアーキテクチャは人間の事前知識によって決定されている。
微分可能なニューラルアーキテクチャサーチ(DARTS)は、高い探索効率でアーキテクチャ設計のマニュアルプロセスを自動化する。
しかしDARTSは、通常同じ複数の学習細胞を積み重ねて最終的なニューラルネットワークを構築し、ネットワークの多様性を制限する。
ちなみに、DARTSは通常、浅いネットワークでアーキテクチャを検索し、より深いネットワークで評価する。
本稿では,眼球運動認識のためのDLアーキテクチャを自動設計する階層的微分可能なアーキテクチャ探索アルゴリズムEM-DARTSを提案する。
まず、スーパーネットを定義し、グローバルかつ局所的なニューラルアーキテクチャ探索法を提案し、最適なアーキテクチャを識別可能なニューラルアーキテクチャ探索と交互に探索する。
ローカル検索戦略は,対象ネットワークのアーキテクチャを最適化するグローバル検索戦略において,異なるセルに対して最適なアーキテクチャを求めることを目的としている。
さらに冗長性を低減するため,各層の情報量を計算するために転送エントロピーを提案し,検索ネットワークをさらに単純化した。
提案するEM-DARTSは,3つの公開データベースを対象とした実験により,最先端の認識性能を実現する最適アーキテクチャを実現できることを示した。
関連論文リスト
- Efficient Global Neural Architecture Search [2.0973843981871574]
本稿では,異なるネットワークに対する可変トレーニングスキームを用いたアーキテクチャ対応近似を提案する。
提案するフレームワークは,CIFAR-10,CIFAR-100,FashionMNISTデータセットに対して高い競争力を持ちながら,EMNISTとKMNISTの新たな最先端を実現する。
論文 参考訳(メタデータ) (2025-02-05T19:10:17Z) - Knowledge-aware Evolutionary Graph Neural Architecture Search [49.13787973318586]
グラフニューラルネットワーク検索(GNAS)は、特定のグラフタスクやデータセットに対して、高性能なグラフニューラルネットワークアーキテクチャをカスタマイズすることができる。
既存のGNAS手法は、探索効率を向上させる可能性のある事前知識を無視して、ゼロ知識状態からアーキテクチャを探し始める。
本研究では,新しいグラフデータセット上での多目的進化探索を高速化するために,そのような先行知識を活用することを提案する。
論文 参考訳(メタデータ) (2024-11-26T11:32:45Z) - Relax DARTS: Relaxing the Constraints of Differentiable Architecture Search for Eye Movement Recognition [9.905155497581815]
眼球運動認識の分野にNASアルゴリズムを導入する。
Relax DARTSは、より効率的なネットワーク検索とトレーニングを実現するために、DARTSの改良である。
Relax DARTSは、他の多機能時間分類タスクへの適応性を示す。
論文 参考訳(メタデータ) (2024-09-18T02:37:04Z) - A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
ニューラルアーキテクチャサーチ(NAS)により、リサーチ者は広大なサーチスペースを自動的に探索し、効率的なニューラルネットワークを見つけることができる。
NASは重要なボトルネックに悩まされており、探索プロセス中に多くのアーキテクチャを評価する必要がある。
SMEM-NASは,多集団構造に基づく多目的進化アルゴリズムである。
論文 参考訳(メタデータ) (2024-07-22T12:46:22Z) - Multi-conditioned Graph Diffusion for Neural Architecture Search [8.290336491323796]
本稿では、離散的な条件付きグラフ拡散プロセスを用いて、高性能ニューラルネットワークアーキテクチャを生成するグラフ拡散に基づくNAS手法を提案する。
6つの標準ベンチマークで有望な結果を示し、新しいアーキテクチャとユニークなアーキテクチャを高速に実現します。
論文 参考訳(メタデータ) (2024-03-09T21:45:31Z) - Rethinking Architecture Selection in Differentiable NAS [74.61723678821049]
微分可能なニューラルアーキテクチャ探索は、その探索効率と簡易性において最も人気のあるNAS手法の1つである。
本稿では,各操作がスーパーネットに与える影響を直接測定する摂動に基づくアーキテクチャ選択を提案する。
提案手法により,DARTSの故障モードを大幅に緩和できることがわかった。
論文 参考訳(メタデータ) (2021-08-10T00:53:39Z) - Off-Policy Reinforcement Learning for Efficient and Effective GAN
Architecture Search [50.40004966087121]
本稿では,GANアーキテクチャ探索のための強化学習に基づくニューラルアーキテクチャ探索手法を提案する。
鍵となる考え方は、よりスムーズなアーキテクチャサンプリングのためのマルコフ決定プロセス(MDP)として、GANアーキテクチャ探索問題を定式化することである。
我々は,従来の政策によって生成されたサンプルを効率的に活用する,非政治的なGANアーキテクチャ探索アルゴリズムを利用する。
論文 参考訳(メタデータ) (2020-07-17T18:29:17Z) - Multi-Objective Neural Architecture Search Based on Diverse Structures
and Adaptive Recommendation [4.595675084986132]
畳み込みニューラルネットワーク(CNN)のためのニューラルネットワーク探索(NAS)の検索空間は巨大である。
本稿では,既存の研究結果と過去の情報を利用して,軽量かつ高精度なアーキテクチャを迅速に発見するMoARRアルゴリズムを提案する。
実験結果から,CIFAR-10上でのMoARRは6GPU時間で1.9%の誤差率と2.3Mパラメータを持つ,強力で軽量なモデルを実現することができた。
論文 参考訳(メタデータ) (2020-07-06T13:42:33Z) - AlphaGAN: Fully Differentiable Architecture Search for Generative
Adversarial Networks [15.740179244963116]
GAN (Generative Adversarial Networks) はミニマックスゲーム問題として定式化され、ジェネレータは差別者に対する対戦学習によって実際のデータ分布にアプローチしようとする。
本研究は,ネットワークアーキテクチャの観点からのモデル学習を促進することを目的として,GANに自動アーキテクチャ探索の最近の進歩を取り入れた。
我々は,αGANと呼ばれる,生成的敵ネットワークのための,完全に差別化可能な検索フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-16T13:27:30Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
本稿では,ディープ・ニューラル・アーキテクチャーを効果的かつ効率的に探索するためのディバイド・アンド・コンカ(DC)手法を提案する。
ImageNetデータセットで75.1%の精度を達成しており、これは同じ検索空間を使った最先端の手法よりも高い。
論文 参考訳(メタデータ) (2020-05-29T09:02:16Z) - Stage-Wise Neural Architecture Search [65.03109178056937]
ResNetやNASNetのような現代の畳み込みネットワークは、多くのコンピュータビジョンアプリケーションで最先端の結果を得た。
これらのネットワークは、同じ解像度で表現を操作するレイヤのセットであるステージで構成されている。
各ステージにおけるレイヤー数の増加はネットワークの予測能力を向上させることが示されている。
しかし、結果として得られるアーキテクチャは、浮動小数点演算、メモリ要求、推論時間の観点から計算的に高価になる。
論文 参考訳(メタデータ) (2020-04-23T14:16:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。