Optimization schemes for unitary tensor-network circuit
- URL: http://arxiv.org/abs/2009.02606v3
- Date: Tue, 30 Mar 2021 22:03:44 GMT
- Title: Optimization schemes for unitary tensor-network circuit
- Authors: Reza Haghshenas
- Abstract summary: We discuss the variational optimization of a unitary tensor-network circuit with different network structures.
The ansatz is performed based on a generalization of well-developed multi-scale entanglement renormalization algorithm.
We present the benchmarking calculations for different network structures.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We discuss the variational optimization of a unitary tensor-network circuit
with different network structures. The ansatz is performed based on a
generalization of well-developed multi-scale entanglement renormalization
algorithm and also the conjugate-gradient method with an effective line search.
We present the benchmarking calculations for different network structures by
studying the Heisenberg model in a strongly disordered magnetic field and a
tensor-network $QR$-decomposition.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Automatic structural optimization of tree tensor networks [0.0]
We propose a TTN algorithm that enables us to automatically optimize the network structure by local reconnections of isometries.
We demonstrate that the entanglement structure embedded in the ground-state of the system can be efficiently visualized as a perfect binary tree in the optimized TTN.
arXiv Detail & Related papers (2022-09-07T14:51:39Z) - Regularized scheme of time evolution tensor network algorithms [0.0]
Regularized factorization is proposed to simulate time evolution for quantum lattice systems.
The resulting compact structure of the propagator indicates a high-order Baker-Campbell-Hausdorff series.
arXiv Detail & Related papers (2022-08-06T03:38:37Z) - Differentiable Programming of Isometric Tensor Networks [0.0]
Differentiable programming is a new programming paradigm which enables large scale optimization through automatic calculation of gradients also known as auto-differentiation.
Here, we extend the differentiable programming to tensor networks with isometric constraints with applications to multiscale entanglement renormalization ansatz (MERA) and tensor network renormalization (TNR)
We numerically tested our methods on 1D critical quantum Ising spin chain and 2D classical Ising model.
We calculate the ground state energy for the 1D quantum model and internal energy for the classical model, and scaling dimensions of scaling operators and find they all agree
arXiv Detail & Related papers (2021-10-08T05:29:41Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Deep learning architectures for inference of AC-OPF solutions [0.4061135251278187]
We present a systematic comparison between neural network (NN) architectures for inference of AC-OPF solutions.
We demonstrate the efficacy of leveraging network topology in the models by constructing abstract representations of electrical grids in the graph domain.
arXiv Detail & Related papers (2020-11-06T13:33:18Z) - Connecting Weighted Automata, Tensor Networks and Recurrent Neural
Networks through Spectral Learning [58.14930566993063]
We present connections between three models used in different research fields: weighted finite automata(WFA) from formal languages and linguistics, recurrent neural networks used in machine learning, and tensor networks.
We introduce the first provable learning algorithm for linear 2-RNN defined over sequences of continuous vectors input.
arXiv Detail & Related papers (2020-10-19T15:28:00Z) - Stochastic Flows and Geometric Optimization on the Orthogonal Group [52.50121190744979]
We present a new class of geometrically-driven optimization algorithms on the orthogonal group $O(d)$.
We show that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, flows and metric learning.
arXiv Detail & Related papers (2020-03-30T15:37:50Z) - Optimization of Graph Total Variation via Active-Set-based Combinatorial
Reconditioning [48.42916680063503]
We propose a novel adaptive preconditioning strategy for proximal algorithms on this problem class.
We show that nested-forest decomposition of the inactive edges yields a guaranteed local linear convergence rate.
Our results suggest that local convergence analysis can serve as a guideline for selecting variable metrics in proximal algorithms.
arXiv Detail & Related papers (2020-02-27T16:33:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.