Learning from Very Few Samples: A Survey
- URL: http://arxiv.org/abs/2009.02653v2
- Date: Sat, 12 Sep 2020 14:21:57 GMT
- Title: Learning from Very Few Samples: A Survey
- Authors: Jiang Lu, Pinghua Gong, Jieping Ye, and Changshui Zhang
- Abstract summary: Few sample learning is significant and challenging in the field of machine learning.
Few sample learning algorithms typically entail hundreds or thousands of supervised samples to guarantee generalization ability.
- Score: 80.06120185496403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few sample learning (FSL) is significant and challenging in the field of
machine learning. The capability of learning and generalizing from very few
samples successfully is a noticeable demarcation separating artificial
intelligence and human intelligence since humans can readily establish their
cognition to novelty from just a single or a handful of examples whereas
machine learning algorithms typically entail hundreds or thousands of
supervised samples to guarantee generalization ability. Despite the long
history dated back to the early 2000s and the widespread attention in recent
years with booming deep learning technologies, little surveys or reviews for
FSL are available until now. In this context, we extensively review 300+ papers
of FSL spanning from the 2000s to 2019 and provide a timely and comprehensive
survey for FSL. In this survey, we review the evolution history as well as the
current progress on FSL, categorize FSL approaches into the generative model
based and discriminative model based kinds in principle, and emphasize
particularly on the meta learning based FSL approaches. We also summarize
several recently emerging extensional topics of FSL and review the latest
advances on these topics. Furthermore, we highlight the important FSL
applications covering many research hotspots in computer vision, natural
language processing, audio and speech, reinforcement learning and robotic, data
analysis, etc. Finally, we conclude the survey with a discussion on promising
trends in the hope of providing guidance and insights to follow-up researches.
Related papers
- Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects [84.6945070729684]
Self-supervised learning (SSL) has recently achieved impressive performance on various time series tasks.
This article reviews current state-of-the-art SSL methods for time series data.
arXiv Detail & Related papers (2023-06-16T18:23:10Z) - A Survey on Self-supervised Learning: Algorithms, Applications, and Future Trends [82.64268080902742]
Self-supervised learning (SSL) aims to learn discriminative features from unlabeled data without relying on human-annotated labels.
SSL has garnered significant attention recently, leading to the development of numerous related algorithms.
This paper presents a review of diverse SSL methods, encompassing algorithmic aspects, application domains, three key trends, and open research questions.
arXiv Detail & Related papers (2023-01-13T14:41:05Z) - A Comprehensive Survey of Few-shot Learning: Evolution, Applications,
Challenges, and Opportunities [5.809416101410813]
Few-shot learning has emerged as an effective learning method and shows great potential.
We extensively investigated 200+ latest papers on FSL published in the past three years.
We propose a novel taxonomy to classify the existing work according to the level of abstraction of knowledge.
arXiv Detail & Related papers (2022-05-13T16:24:35Z) - Audio Self-supervised Learning: A Survey [60.41768569891083]
Self-Supervised Learning (SSL) targets at discovering general representations from large-scale data without requiring human annotations.
Its success in the fields of computer vision and natural language processing have prompted its recent adoption into the field of audio and speech processing.
arXiv Detail & Related papers (2022-03-02T15:58:29Z) - Semantics-driven Attentive Few-shot Learning over Clean and Noisy
Samples [0.0]
We aim to train meta-learner models that can leverage prior semantic knowledge about novel classes to guide the classifier synthesis process.
In particular, we propose semantically-conditioned feature attention and sample attention mechanisms that estimate the importance of representation dimensions and training instances.
arXiv Detail & Related papers (2022-01-09T16:16:23Z) - A Strong Baseline for Semi-Supervised Incremental Few-Shot Learning [54.617688468341704]
Few-shot learning aims to learn models that generalize to novel classes with limited training samples.
We propose a novel paradigm containing two parts: (1) a well-designed meta-training algorithm for mitigating ambiguity between base and novel classes caused by unreliable pseudo labels and (2) a model adaptation mechanism to learn discriminative features for novel classes while preserving base knowledge using few labeled and all the unlabeled data.
arXiv Detail & Related papers (2021-10-21T13:25:52Z) - TAFSSL: Task-Adaptive Feature Sub-Space Learning for few-shot
classification [50.358839666165764]
We show that the Task-Adaptive Feature Sub-Space Learning (TAFSSL) can significantly boost the performance in Few-Shot Learning scenarios.
Specifically, we show that on the challenging miniImageNet and tieredImageNet benchmarks, TAFSSL can improve the current state-of-the-art in both transductive and semi-supervised FSL settings by more than $5%$.
arXiv Detail & Related papers (2020-03-14T16:59:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.