HPSGD: Hierarchical Parallel SGD With Stale Gradients Featuring
- URL: http://arxiv.org/abs/2009.02701v2
- Date: Sat, 28 Nov 2020 15:36:43 GMT
- Title: HPSGD: Hierarchical Parallel SGD With Stale Gradients Featuring
- Authors: Yuhao Zhou, Qing Ye, Hailun Zhang, Jiancheng Lv
- Abstract summary: A novel Hierarchical Parallel SGD (HPSGD) strategy is proposed to boost the distributed training process of the deep neural network (DNN)
Experiments are conducted to demonstrate that the proposed HPSGD approach substantially boosts the distributed DNN training, reduces the disturbance of the stale gradients and achieves better accuracy in given fixed wall-time.
- Score: 18.8426865970643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While distributed training significantly speeds up the training process of
the deep neural network (DNN), the utilization of the cluster is relatively low
due to the time-consuming data synchronizing between workers. To alleviate this
problem, a novel Hierarchical Parallel SGD (HPSGD) strategy is proposed based
on the observation that the data synchronization phase can be paralleled with
the local training phase (i.e., Feed-forward and back-propagation).
Furthermore, an improved model updating method is unitized to remedy the
introduced stale gradients problem, which commits updates to the replica (i.e.,
a temporary model that has the same parameters as the global model) and then
merges the average changes to the global model. Extensive experiments are
conducted to demonstrate that the proposed HPSGD approach substantially boosts
the distributed DNN training, reduces the disturbance of the stale gradients
and achieves better accuracy in given fixed wall-time.
Related papers
- Asynchronous Stochastic Gradient Descent with Decoupled Backpropagation and Layer-Wise Updates [1.9241821314180372]
One major shortcoming of backpropagation is the interlocking between the forward and backward phases of the algorithm.
We propose a method that parallelises SGD updates across the layers of a model by asynchronously updating them from multiple threads.
We show that this approach yields close to state-of-theart results while running up to 2.97x faster than Hogwild! scaled on multiple devices.
arXiv Detail & Related papers (2024-10-08T12:32:36Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental
Regularization [5.182014186927254]
Federated Learning (FL) has been successfully adopted for distributed training and inference of large-scale Deep Neural Networks (DNNs)
We contribute with a novel FL framework (coined FedDIP) which combines (i) dynamic model pruning with error feedback to eliminate redundant information exchange.
We provide convergence analysis of FedDIP and report on a comprehensive performance and comparative assessment against state-of-the-art methods.
arXiv Detail & Related papers (2023-09-13T08:51:19Z) - OSP: Boosting Distributed Model Training with 2-stage Synchronization [24.702780532364056]
We propose a new model synchronization method named Overlapped Parallelization (OSP)
OSP achieves efficient communication with a 2-stage synchronization approach and uses Local-Gradient-based.
correction (LGP) to avoid accuracy loss caused by stale parameters.
Results show that OSP can achieve up to 50% improvement in throughput without accuracy loss compared to popular synchronization models.
arXiv Detail & Related papers (2023-06-29T13:24:12Z) - FedAgg: Adaptive Federated Learning with Aggregated Gradients [1.5653612447564105]
We propose an adaptive FEDerated learning algorithm called FedAgg to alleviate the divergence between the local and average model parameters and obtain a fast model convergence rate.
We show that our framework is superior to existing state-of-the-art FL strategies for enhancing model performance and accelerating convergence rate under IID and Non-IID datasets.
arXiv Detail & Related papers (2023-03-28T08:07:28Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Magnitude Matters: Fixing SIGNSGD Through Magnitude-Aware Sparsification
in the Presence of Data Heterogeneity [60.791736094073]
Communication overhead has become one of the major bottlenecks in the distributed training of deep neural networks.
We propose a magnitude-driven sparsification scheme, which addresses the non-convergence issue of SIGNSGD.
The proposed scheme is validated through experiments on Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets.
arXiv Detail & Related papers (2023-02-19T17:42:35Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - DaSGD: Squeezing SGD Parallelization Performance in Distributed Training
Using Delayed Averaging [4.652668321425679]
Minibatch gradient descent (SGD) algorithm requires workers to halt forward/back propagations.
DaSGD parallelizes SGD and forward/back propagations to hide 100% of the communication overhead.
arXiv Detail & Related papers (2020-05-31T05:43:50Z) - Detached Error Feedback for Distributed SGD with Random Sparsification [98.98236187442258]
Communication bottleneck has been a critical problem in large-scale deep learning.
We propose a new distributed error feedback (DEF) algorithm, which shows better convergence than error feedback for non-efficient distributed problems.
We also propose DEFA to accelerate the generalization of DEF, which shows better bounds than DEF.
arXiv Detail & Related papers (2020-04-11T03:50:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.