Efficient Federated Learning with Timely Update Dissemination
- URL: http://arxiv.org/abs/2507.06031v1
- Date: Tue, 08 Jul 2025 14:34:32 GMT
- Title: Efficient Federated Learning with Timely Update Dissemination
- Authors: Juncheng Jia, Ji Liu, Chao Huo, Yihui Shen, Yang Zhou, Huaiyu Dai, Dejing Dou,
- Abstract summary: Federated Learning (FL) has emerged as a compelling methodology for the management of distributed data.<n>We propose an efficient FL approach that capitalizes on additional downlink bandwidth resources to ensure timely update dissemination.
- Score: 54.668309196009204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has emerged as a compelling methodology for the management of distributed data, marked by significant advancements in recent years. In this paper, we propose an efficient FL approach that capitalizes on additional downlink bandwidth resources to ensure timely update dissemination. Initially, we implement this strategy within an asynchronous framework, introducing the Asynchronous Staleness-aware Model Update (FedASMU), which integrates both server-side and device-side methodologies. On the server side, we present an asynchronous FL system model that employs a dynamic model aggregation technique, which harmonizes local model updates with the global model to enhance both accuracy and efficiency. Concurrently, on the device side, we propose an adaptive model adjustment mechanism that integrates the latest global model with local models during training to further elevate accuracy. Subsequently, we extend this approach to a synchronous context, referred to as FedSSMU. Theoretical analyses substantiate the convergence of our proposed methodologies. Extensive experiments, encompassing six models and five public datasets, demonstrate that FedASMU and FedSSMU significantly surpass baseline methods in terms of both accuracy (up to 145.87%) and efficiency (up to 97.59%).
Related papers
- SEAFL: Enhancing Efficiency in Semi-Asynchronous Federated Learning through Adaptive Aggregation and Selective Training [26.478852701376294]
We present em SEAFL, a novel FL framework designed to mitigate both the straggler and the stale model challenges in semi-asynchronous FL.<n>em SEAFL dynamically assigns weights to uploaded models during aggregation based on their staleness and importance to the current global model.<n>We evaluate the effectiveness of em SEAFL through extensive experiments on three benchmark datasets.
arXiv Detail & Related papers (2025-02-22T05:13:53Z) - Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
Mobile devices, including smartphones and laptops, generate decentralized and heterogeneous data.
Federated Learning (FL) offers a promising alternative by enabling collaborative training of a global model across decentralized devices without data sharing.
This paper focuses on data-dependent heterogeneity in FL and proposes a novel approach leveraging mean latent representations extracted from locally trained models.
arXiv Detail & Related papers (2024-11-10T04:03:09Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Mitigating System Bias in Resource Constrained Asynchronous Federated
Learning Systems [2.8790600498444032]
We propose a dynamic global model aggregation method within Asynchronous Federated Learning (AFL) deployments.
Our method scores and adjusts the weighting of client model updates based on their upload frequency to accommodate differences in device capabilities.
arXiv Detail & Related papers (2024-01-24T10:51:15Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - AEDFL: Efficient Asynchronous Decentralized Federated Learning with
Heterogeneous Devices [61.66943750584406]
We propose an Asynchronous Efficient Decentralized FL framework, i.e., AEDFL, in heterogeneous environments.
First, we propose an asynchronous FL system model with an efficient model aggregation method for improving the FL convergence.
Second, we propose a dynamic staleness-aware model update approach to achieve superior accuracy.
Third, we propose an adaptive sparse training method to reduce communication and computation costs without significant accuracy degradation.
arXiv Detail & Related papers (2023-12-18T05:18:17Z) - Asynchronous Multi-Model Dynamic Federated Learning over Wireless
Networks: Theory, Modeling, and Optimization [20.741776617129208]
Federated learning (FL) has emerged as a key technique for distributed machine learning (ML)
We first formulate rectangular scheduling steps and functions to capture the impact of system parameters on learning performance.
Our analysis sheds light on the joint impact of device training variables and asynchronous scheduling decisions.
arXiv Detail & Related papers (2023-05-22T21:39:38Z) - FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning
Using Shared Data on the Server [64.94942635929284]
Federated Learning (FL) suffers from two critical challenges, i.e., limited computational resources and low training efficiency.
We propose a novel FL framework, FedDUAP, to exploit the insensitive data on the server and the decentralized data in edge devices.
By integrating the two original techniques together, our proposed FL model, FedDUAP, significantly outperforms baseline approaches in terms of accuracy (up to 4.8% higher), efficiency (up to 2.8 times faster), and computational cost (up to 61.9% smaller)
arXiv Detail & Related papers (2022-04-25T10:00:00Z) - Decentralized Event-Triggered Federated Learning with Heterogeneous
Communication Thresholds [12.513477328344255]
We propose a novel methodology for distributed model aggregations via asynchronous, event-triggered consensus iterations over a network graph topology.
We demonstrate that our methodology achieves the globally optimal learning model under standard assumptions in distributed learning and graph consensus literature.
arXiv Detail & Related papers (2022-04-07T20:35:37Z) - Device Scheduling and Update Aggregation Policies for Asynchronous
Federated Learning [72.78668894576515]
Federated Learning (FL) is a newly emerged decentralized machine learning (ML) framework.
We propose an asynchronous FL framework with periodic aggregation to eliminate the straggler issue in FL systems.
arXiv Detail & Related papers (2021-07-23T18:57:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.