Asynchronous Stochastic Gradient Descent with Decoupled Backpropagation and Layer-Wise Updates
- URL: http://arxiv.org/abs/2410.05985v1
- Date: Tue, 8 Oct 2024 12:32:36 GMT
- Title: Asynchronous Stochastic Gradient Descent with Decoupled Backpropagation and Layer-Wise Updates
- Authors: Cabrel Teguemne Fokam, Khaleelulla Khan Nazeer, Lukas König, David Kappel, Anand Subramoney,
- Abstract summary: One major shortcoming of backpropagation is the interlocking between the forward and backward phases of the algorithm.
We propose a method that parallelises SGD updates across the layers of a model by asynchronously updating them from multiple threads.
We show that this approach yields close to state-of-theart results while running up to 2.97x faster than Hogwild! scaled on multiple devices.
- Score: 1.9241821314180372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing size of deep learning models has created the need for more efficient alternatives to the standard error backpropagation algorithm, that make better use of asynchronous, parallel and distributed computing. One major shortcoming of backpropagation is the interlocking between the forward phase of the algorithm, which computes a global loss, and the backward phase where the loss is backpropagated through all layers to compute the gradients, which are used to update the network parameters. To address this problem, we propose a method that parallelises SGD updates across the layers of a model by asynchronously updating them from multiple threads. Furthermore, since we observe that the forward pass is often much faster than the backward pass, we use separate threads for the forward and backward pass calculations, which allows us to use a higher ratio of forward to backward threads than the usual 1:1 ratio, reducing the overall staleness of the parameters. Thus, our approach performs asynchronous stochastic gradient descent using separate threads for the loss (forward) and gradient (backward) computations and performs layer-wise partial updates to parameters in a distributed way. We show that this approach yields close to state-of-the-art results while running up to 2.97x faster than Hogwild! scaled on multiple devices (Locally-Partitioned-Asynchronous-Parallel SGD). We theoretically prove the convergence of the algorithm using a novel theoretical framework based on stochastic differential equations and the drift diffusion process, by modeling the asynchronous parameter updates as a stochastic process.
Related papers
- AsGrad: A Sharp Unified Analysis of Asynchronous-SGD Algorithms [45.90015262911875]
We analyze asynchronous-type algorithms for distributed SGD in the heterogeneous setting.
As a by-product of our analysis, we also demonstrate guarantees for gradient-type algorithms such as SGD with random tightness.
arXiv Detail & Related papers (2023-10-31T13:44:53Z) - Robust Fully-Asynchronous Methods for Distributed Training over General Architecture [11.480605289411807]
Perfect synchronization in distributed machine learning problems is inefficient and even impossible due to the existence of latency, package losses and stragglers.
We propose Fully-Asynchronous Gradient Tracking method (R-FAST), where each device performs local computation and communication at its own without any form of impact.
arXiv Detail & Related papers (2023-07-21T14:36:40Z) - OSP: Boosting Distributed Model Training with 2-stage Synchronization [24.702780532364056]
We propose a new model synchronization method named Overlapped Parallelization (OSP)
OSP achieves efficient communication with a 2-stage synchronization approach and uses Local-Gradient-based.
correction (LGP) to avoid accuracy loss caused by stale parameters.
Results show that OSP can achieve up to 50% improvement in throughput without accuracy loss compared to popular synchronization models.
arXiv Detail & Related papers (2023-06-29T13:24:12Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
Recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms.
These RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation.
We propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer.
arXiv Detail & Related papers (2022-04-18T17:53:44Z) - Learning Iterative Robust Transformation Synchronization [71.73273007900717]
We propose to use graph neural networks (GNNs) to learn transformation synchronization.
In this work, we avoid handcrafting robust loss functions, and propose to use graph neural networks (GNNs) to learn transformation synchronization.
arXiv Detail & Related papers (2021-11-01T07:03:14Z) - Distributed stochastic optimization with large delays [59.95552973784946]
One of the most widely used methods for solving large-scale optimization problems is distributed asynchronous gradient descent (DASGD)
We show that DASGD converges to a global optimal implementation model under same delay assumptions.
arXiv Detail & Related papers (2021-07-06T21:59:49Z) - Stochastic Optimization with Laggard Data Pipelines [65.20044914532221]
We show that "dataechoed" extensions of common optimization methods exhibit provable improvements over their synchronous counterparts.
Specifically, we show that in convex optimization with minibatches, data echoing affords speedups on the curvature-dominated part of the convergence rate, while maintaining the optimal statistical rate.
arXiv Detail & Related papers (2020-10-26T14:55:31Z) - HPSGD: Hierarchical Parallel SGD With Stale Gradients Featuring [18.8426865970643]
A novel Hierarchical Parallel SGD (HPSGD) strategy is proposed to boost the distributed training process of the deep neural network (DNN)
Experiments are conducted to demonstrate that the proposed HPSGD approach substantially boosts the distributed DNN training, reduces the disturbance of the stale gradients and achieves better accuracy in given fixed wall-time.
arXiv Detail & Related papers (2020-09-06T10:17:56Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - A Hybrid-Order Distributed SGD Method for Non-Convex Optimization to
Balance Communication Overhead, Computational Complexity, and Convergence
Rate [28.167294398293297]
We propose a method of distributed gradient descent (SGD) with low communication load and computational complexity, and still fast.
To reduce the computational complexity in each iteration, the worker nodes approximate the directional derivatives with zeroth-order gradient estimation.
arXiv Detail & Related papers (2020-03-27T14:02:15Z) - Accelerating Feedforward Computation via Parallel Nonlinear Equation
Solving [106.63673243937492]
Feedforward computation, such as evaluating a neural network or sampling from an autoregressive model, is ubiquitous in machine learning.
We frame the task of feedforward computation as solving a system of nonlinear equations. We then propose to find the solution using a Jacobi or Gauss-Seidel fixed-point method, as well as hybrid methods of both.
Our method is guaranteed to give exactly the same values as the original feedforward computation with a reduced (or equal) number of parallelizable iterations, and hence reduced time given sufficient parallel computing power.
arXiv Detail & Related papers (2020-02-10T10:11:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.