論文の概要: 3D Room Layout Estimation Beyond the Manhattan World Assumption
- arxiv url: http://arxiv.org/abs/2009.02857v1
- Date: Mon, 7 Sep 2020 02:14:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-10-21 02:30:00.684327
- Title: 3D Room Layout Estimation Beyond the Manhattan World Assumption
- Title(参考訳): マンハッタン世界想定を超えた3次元空間配置推定
- Authors: Dongho Choi
- Abstract要約: 本稿では,3次元部屋レイアウト推定のための新しいトレーニングと後処理手法を提案する。
実験結果から,本手法は目に見える部屋配置の予測において,最先端の手法よりも高い精度を示すことがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting 3D room layout from single image is a challenging task with many
applications. In this paper, we propose a new training and post-processing
method for 3D room layout estimation, built on a recent state-of-the-art 3D
room layout estimation model. Experimental results show our method outperforms
state-of-the-art approaches by a large margin in predicting visible room
layout. Our method has obtained the 3rd place in 2020 Holistic Scene Structures
for 3D Vision Workshop.
- Abstract(参考訳): 単一画像から3Dルームレイアウトを予測することは、多くのアプリケーションにおいて難しい課題である。
本稿では,最近の最先端3次元部屋レイアウト推定モデルに基づく3次元部屋レイアウト推定のための新しいトレーニングと後処理手法を提案する。
実験結果から,本手法は目に見える部屋配置の予測において,最先端の手法よりも高い精度を示すことがわかった。
本手法は,2020年の3Dビジョンワークショップで3位となった。
関連論文リスト
- ControlRoom3D: Room Generation using Semantic Proxy Rooms [48.93419701713694]
高品質なルームメッシュを生成するための新しい手法であるControlRoom3Dを提案する。
われわれのアプローチはユーザ定義の3Dセマンティック・プロキシールームであり、粗い部屋のレイアウトを概説している。
2Dにレンダリングすると、この3D表現は強力な2Dモデルを制御するための貴重な幾何学的および意味的な情報を提供する。
論文 参考訳(メタデータ) (2023-12-08T17:55:44Z) - Multi-CLIP: Contrastive Vision-Language Pre-training for Question
Answering tasks in 3D Scenes [68.61199623705096]
一般的な言語知識と視覚概念を2次元画像から3次元シーン理解に適用するためのトレーニングモデルは、研究者が最近探求を始めたばかりの有望な方向である。
そこで本研究では,モデルによる3次元シーンポイントクラウド表現の学習を可能にする,新しい3次元事前学習手法であるMulti-CLIPを提案する。
論文 参考訳(メタデータ) (2023-06-04T11:08:53Z) - CLIP-Guided Vision-Language Pre-training for Question Answering in 3D
Scenes [68.61199623705096]
我々は,モデルが意味論的かつ伝達可能な3Dシーンポイントクラウド表現を学習するのに役立つ,新しい3D事前学習型ビジョンランゲージを設計する。
符号化された3Dシーン特徴と対応する2D画像とテキスト埋め込みとを一致させることにより、人気のあるCLIPモデルの表現力を3Dエンコーダに注入する。
我々は,3次元視覚質問応答の下流課題に対して,我々のモデルによる3次元世界推論能力を評価する。
論文 参考訳(メタデータ) (2023-04-12T16:52:29Z) - Learning 3D Scene Priors with 2D Supervision [37.79852635415233]
本研究では,3次元の地平を必要とせず,レイアウトや形状の3次元シーンを学習するための新しい手法を提案する。
提案手法は, 3次元シーンを潜在ベクトルとして表現し, クラスカテゴリを特徴とするオブジェクト列に段階的に復号化することができる。
3D-FRONT と ScanNet による実験により,本手法は単一視点再構成における技術状況よりも優れていた。
論文 参考訳(メタデータ) (2022-11-25T15:03:32Z) - Learning 3D Object Shape and Layout without 3D Supervision [26.575177430506667]
3Dシーンはオブジェクトのセットで構成され、それぞれが空間における位置を与える形状とレイアウトを持つ。
本研究では,物体の3次元形状とレイアウトを,地平面形状やレイアウト情報なしで予測する手法を提案する。
我々のアプローチは、より小さく、より多様なデータセットで訓練された教師ありアプローチよりも優れています。
論文 参考訳(メタデータ) (2022-06-14T17:49:44Z) - Roominoes: Generating Novel 3D Floor Plans From Existing 3D Rooms [22.188206636953794]
既存の3D部屋から新しい3Dフロアプランを作成するタスクを提案する。
1つは利用可能な2Dフロアプランを使用して、3Dルームの選択と変形をガイドし、もう1つは互換性のある3Dルームのセットを取得し、それらを新しいレイアウトに組み合わせることを学ぶ。
論文 参考訳(メタデータ) (2021-12-10T16:17:01Z) - LED2-Net: Monocular 360 Layout Estimation via Differentiable Depth
Rendering [59.63979143021241]
パノラマの地平線上での深度予測問題として360度レイアウト推定のタスクを定式化する。
レイアウトから深度予測への変換を区別できるように、差分可能な深度レンダリング手順を提案します。
提案手法は,360 レイアウトのベンチマークデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-04-01T15:48:41Z) - 3D-FUTURE: 3D Furniture shape with TextURE [100.62519619022679]
TextUre(3D-Future)による3D家具形状: 家庭シナリオにおける3D家具形状のリッチで大規模リポジトリ。
この技術レポートの時点で、3D-FUTUREは、5000部屋のクリーンでリアルな合成画像20,240枚を含んでいる。
高解像度のテクスチャを備えた家具には、9,992のユニークな3Dインスタンスがある。
論文 参考訳(メタデータ) (2020-09-21T06:26:39Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z) - General 3D Room Layout from a Single View by Render-and-Compare [36.94817376590415]
一つの視点から部屋の3次元レイアウトを再構築する新しい手法を提案する。
データセットはScanNetの293の画像で構成されており、正確な3Dレイアウトで注釈を付けました。
論文 参考訳(メタデータ) (2020-01-07T16:14:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。