Frontier Detection and Reachability Analysis for Efficient 2D Graph-SLAM
Based Active Exploration
- URL: http://arxiv.org/abs/2009.02869v1
- Date: Mon, 7 Sep 2020 03:13:47 GMT
- Title: Frontier Detection and Reachability Analysis for Efficient 2D Graph-SLAM
Based Active Exploration
- Authors: Zezhou Sun, Banghe Wu, Cheng-Zhong Xu, Sanjay E. Sarma, Jian Yang, and
Hui Kong
- Abstract summary: We propose an integrated approach to active exploration by exploiting the Cartographer method as the base SLAM module for submap creation.
We also carry out analysis on the reachability of frontiers and their clusters to ensure that the detected frontier can be reached by robot.
- Score: 39.77922214957476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an integrated approach to active exploration by exploiting the
Cartographer method as the base SLAM module for submap creation and performing
efficient frontier detection in the geometrically co-aligned submaps induced by
graph optimization. We also carry out analysis on the reachability of frontiers
and their clusters to ensure that the detected frontier can be reached by
robot. Our method is tested on a mobile robot in real indoor scene to
demonstrate the effectiveness and efficiency of our approach.
Related papers
- Unifying Unsupervised Graph-Level Anomaly Detection and Out-of-Distribution Detection: A Benchmark [73.58840254552656]
Unsupervised graph-level anomaly detection (GLAD) and unsupervised graph-level out-of-distribution (OOD) detection have received significant attention in recent years.
We present a Unified Benchmark for unsupervised Graph-level OOD and anomaly Detection (our method)
Our benchmark encompasses 35 datasets spanning four practical anomaly and OOD detection scenarios.
We conduct multi-dimensional analyses to explore the effectiveness, generalizability, robustness, and efficiency of existing methods.
arXiv Detail & Related papers (2024-06-21T04:07:43Z) - FIT-SLAM -- Fisher Information and Traversability estimation-based
Active SLAM for exploration in 3D environments [1.4474137122906163]
Active visual SLAM finds a wide array of applications in-Denied sub-terrain environments and outdoor environments for ground robots.
It is imperative to incorporate the perception considerations in the goal selection and path planning towards the goal during an exploration mission.
We propose FIT-SLAM, a new exploration method tailored for unmanned ground vehicles (UGVs) to explore 3D environments.
arXiv Detail & Related papers (2024-01-17T16:46:38Z) - Probable Object Location (POLo) Score Estimation for Efficient Object
Goal Navigation [15.623723522165731]
We introduce a novel framework centered around the Probable Object Location (POLo) score.
We further enhance the framework's practicality by introducing POLoNet, a neural network trained to approximate the computationally intensive POLo score.
Our experiments, involving the first phase of the OVMM 2023 challenge, demonstrate that an agent equipped with POLoNet significantly outperforms a range of baseline methods.
arXiv Detail & Related papers (2023-11-14T08:45:32Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
We propose an architecture and loss formulation to improve the accuracy of local lane graph estimates.
The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers.
We show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods.
arXiv Detail & Related papers (2023-07-20T15:21:28Z) - Reinforcement Learning with Frontier-Based Exploration via Autonomous
Environment [0.0]
This research combines an existing Visual-Graph SLAM known as ExploreORB with reinforcement learning.
The proposed algorithm aims to improve the efficiency and accuracy of ExploreORB by optimizing the exploration process of frontiers to build a more accurate map.
arXiv Detail & Related papers (2023-07-14T12:19:46Z) - SEAL: Simultaneous Exploration and Localization in Multi-Robot Systems [0.0]
This paper proposes a novel simultaneous exploration and localization approach.
It uses information fusion for maximum exploration while performing communication graph optimization for relative localization.
SEAL outperformed cutting-edge methods on exploration and localization performance in extensive ROS-Gazebo simulations.
arXiv Detail & Related papers (2023-06-22T01:27:55Z) - Incremental 3D Scene Completion for Safe and Efficient Exploration
Mapping and Planning [60.599223456298915]
We propose a novel way to integrate deep learning into exploration by leveraging 3D scene completion for informed, safe, and interpretable mapping and planning.
We show that our method can speed up coverage of an environment by 73% compared to the baselines with only minimal reduction in map accuracy.
Even if scene completions are not included in the final map, we show that they can be used to guide the robot to choose more informative paths, speeding up the measurement of the scene with the robot's sensors by 35%.
arXiv Detail & Related papers (2022-08-17T14:19:33Z) - Learning to Explore by Reinforcement over High-Level Options [0.0]
We propose a new method which grants an agent two intertwined options of behaviors: "look-around" and "frontier navigation"
In each timestep, an agent produces an option and a corresponding action according to the policy.
We demonstrate the effectiveness of the proposed method on two publicly available 3D environment datasets.
arXiv Detail & Related papers (2021-11-02T04:21:34Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z) - Localized active learning of Gaussian process state space models [63.97366815968177]
A globally accurate model is not required to achieve good performance in many common control applications.
We propose an active learning strategy for Gaussian process state space models that aims to obtain an accurate model on a bounded subset of the state-action space.
By employing model predictive control, the proposed technique integrates information collected during exploration and adaptively improves its exploration strategy.
arXiv Detail & Related papers (2020-05-04T05:35:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.