Escaping Saddle Points in Ill-Conditioned Matrix Completion with a
Scalable Second Order Method
- URL: http://arxiv.org/abs/2009.02905v1
- Date: Mon, 7 Sep 2020 06:51:20 GMT
- Title: Escaping Saddle Points in Ill-Conditioned Matrix Completion with a
Scalable Second Order Method
- Authors: Christian K\"ummerle, Claudio M. Verdun
- Abstract summary: We propose an iterative algorithm for low-rank matrix.
We show in numerical experiments that unlike many state-of-the-art approaches, our approach is able to complete very ill-conditioned with a condition number of up to $10$ from few samples.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an iterative algorithm for low-rank matrix completion that can be
interpreted as both an iteratively reweighted least squares (IRLS) algorithm
and a saddle-escaping smoothing Newton method applied to a non-convex rank
surrogate objective. It combines the favorable data efficiency of previous IRLS
approaches with an improved scalability by several orders of magnitude. Our
method attains a local quadratic convergence rate already for a number of
samples that is close to the information theoretical limit. We show in
numerical experiments that unlike many state-of-the-art approaches, our
approach is able to complete very ill-conditioned matrices with a condition
number of up to $10^{10}$ from few samples.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Recovering Simultaneously Structured Data via Non-Convex Iteratively
Reweighted Least Squares [0.8702432681310401]
We propose a new algorithm for recovering data that adheres to multiple, heterogeneous low-dimensional structures from linear observations.
We show that the IRLS method favorable in identifying low/comckuele state measurements.
arXiv Detail & Related papers (2023-06-08T06:35:47Z) - Stochastic Gradient Methods with Preconditioned Updates [47.23741709751474]
There are several algorithms for such problems, but existing methods often work poorly when badly scaled and/or ill-conditioned.
Here we include preconditionimater based on Hutchinson's approach to approxing the diagonal Hessian.
We prove convergence both when smoothness and the PL condition are assumed.
arXiv Detail & Related papers (2022-06-01T07:38:08Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - A Scalable Second Order Method for Ill-Conditioned Matrix Completion
from Few Samples [0.0]
We propose an iterative algorithm for low-rank matrix completion.
It is able to complete very ill-conditioned matrices with a condition number of up to $10$ from few samples.
arXiv Detail & Related papers (2021-06-03T20:31:00Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.