Towards learned optimal q-space sampling in diffusion MRI
- URL: http://arxiv.org/abs/2009.03008v1
- Date: Mon, 7 Sep 2020 10:46:12 GMT
- Title: Towards learned optimal q-space sampling in diffusion MRI
- Authors: Tomer Weiss, Sanketh Vedula, Ortal Senouf, Oleg Michailovich, and
AlexBronstein
- Abstract summary: We propose a unified estimation framework for fiber tractography.
The proposed solution offers substantial improvements in the quality of signal estimation as well as the accuracy of ensuing analysis.
We present a comprehensive comparative analysis based on the Human Connectome Project data.
- Score: 1.5640063295947522
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Fiber tractography is an important tool of computational neuroscience that
enables reconstructing the spatial connectivity and organization of white
matter of the brain. Fiber tractography takes advantage of diffusion Magnetic
Resonance Imaging (dMRI) which allows measuring the apparent diffusivity of
cerebral water along different spatial directions. Unfortunately, collecting
such data comes at the price of reduced spatial resolution and substantially
elevated acquisition times, which limits the clinical applicability of dMRI.
This problem has been thus far addressed using two principal strategies. Most
of the efforts have been extended towards improving the quality of signal
estimation for any, yet fixed sampling scheme (defined through the choice of
diffusion-encoding gradients). On the other hand, optimization over the
sampling scheme has also proven to be effective. Inspired by the previous
results, the present work consolidates the above strategies into a unified
estimation framework, in which the optimization is carried out with respect to
both estimation model and sampling design {\it concurrently}. The proposed
solution offers substantial improvements in the quality of signal estimation as
well as the accuracy of ensuing analysis by means of fiber tractography. While
proving the optimality of the learned estimation models would probably need
more extensive evaluation, we nevertheless claim that the learned sampling
schemes can be of immediate use, offering a way to improve the dMRI analysis
without the necessity of deploying the neural network used for their
estimation. We present a comprehensive comparative analysis based on the Human
Connectome Project data. Code and learned sampling designs aviliable at
https://github.com/tomer196/Learned_dMRI.
Related papers
- Multi-Modality Conditioned Variational U-Net for Field-of-View Extension in Brain Diffusion MRI [10.096809077954095]
An incomplete field-of-view (FOV) in diffusion magnetic resonance imaging (dMRI) can severely hinder the volumetric and bundle analyses of whole-brain white matter connectivity.
We propose a novel framework for imputing dMRI scans in the incomplete part of the FOV by integrating the learned diffusion features in the acquired part of the FOV to the complete brain anatomical structure.
arXiv Detail & Related papers (2024-09-20T18:41:29Z) - Learning to sample in Cartesian MRI [1.2432046687586285]
Shortening scanning times is crucial in clinical settings, as it increases patient comfort, decreases examination costs and improves throughput.
Recent advances in compressed sensing (CS) and deep learning allow accelerated MRI acquisition by reconstructing high-quality images from undersampled data.
This thesis explores two approaches to address this gap in the context of Cartesian MRI.
arXiv Detail & Related papers (2023-12-07T14:38:07Z) - PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction [0.7199733380797579]
Quantitative Magnetic Resonance Imaging (qMRI) enables the reproducible measurement of biophysical parameters in tissue.
The challenge lies in solving a nonlinear, ill-posed inverse problem to obtain desired tissue parameter maps from acquired raw data.
We propose PINQI, a novel qMRI reconstruction method that integrates the knowledge about the signal, acquisition model, and learned regularization into a single end-to-end trainable neural network.
arXiv Detail & Related papers (2023-06-19T15:37:53Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
We present a new method to perform Neural Posterior Estimation (NPE) with a differentiable simulator.
We demonstrate how gradient information helps constrain the shape of the posterior and improves sample-efficiency.
arXiv Detail & Related papers (2022-07-12T16:08:04Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Learning Optimal K-space Acquisition and Reconstruction using
Physics-Informed Neural Networks [46.751292014516025]
Deep neural networks have been applied to reconstruct undersampled k-space data and have shown improved reconstruction performance.
This work proposes a novel framework to learn k-space sampling trajectories by considering it as an Ordinary Differential Equation (ODE) problem.
Experiments were conducted on different in-viv datasets (textite.g., brain and knee images) acquired with different sequences.
arXiv Detail & Related papers (2022-04-05T20:28:42Z) - Estimation of the Mean Function of Functional Data via Deep Neural
Networks [6.230751621285321]
We propose a deep neural network method to perform nonparametric regression for functional data.
The proposed method is applied to analyze positron emission tomography images of patients with Alzheimer disease.
arXiv Detail & Related papers (2020-12-08T17:18:16Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.