Equivariant Spherical CNNs for Accurate Fiber Orientation Distribution Estimation in Neonatal Diffusion MRI with Reduced Acquisition Time
- URL: http://arxiv.org/abs/2504.01925v1
- Date: Wed, 02 Apr 2025 17:36:51 GMT
- Title: Equivariant Spherical CNNs for Accurate Fiber Orientation Distribution Estimation in Neonatal Diffusion MRI with Reduced Acquisition Time
- Authors: Haykel Snoussi, Davood Karimi,
- Abstract summary: We propose a rotationally equivariant Spherical Convolutional Neural Network (sCNN) framework tailored for neonatal dMRI.<n>We train and evaluate the performance of our sCNN using real data from 43 neonatal dMRI datasets.
- Score: 1.675857332621569
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Early and accurate assessment of brain microstructure using diffusion Magnetic Resonance Imaging (dMRI) is crucial for identifying neurodevelopmental disorders in neonates, but remains challenging due to low signal-to-noise ratio (SNR), motion artifacts, and ongoing myelination. In this study, we propose a rotationally equivariant Spherical Convolutional Neural Network (sCNN) framework tailored for neonatal dMRI. We predict the Fiber Orientation Distribution (FOD) from multi-shell dMRI signals acquired with a reduced set of gradient directions (30% of the full protocol), enabling faster and more cost-effective acquisitions. We train and evaluate the performance of our sCNN using real data from 43 neonatal dMRI datasets provided by the Developing Human Connectome Project (dHCP). Our results demonstrate that the sCNN achieves significantly lower mean squared error (MSE) and higher angular correlation coefficient (ACC) compared to a Multi-Layer Perceptron (MLP) baseline, indicating improved accuracy in FOD estimation. Furthermore, tractography results based on the sCNN-predicted FODs show improved anatomical plausibility, coverage, and coherence compared to those from the MLP. These findings highlight that sCNNs, with their inherent rotational equivariance, offer a promising approach for accurate and clinically efficient dMRI analysis, paving the way for improved diagnostic capabilities and characterization of early brain development.
Related papers
- Deep-Unrolling Multidimensional Harmonic Retrieval Algorithms on Neuromorphic Hardware [78.17783007774295]
This paper explores the potential of conversion-based neuromorphic algorithms for highly accurate and energy-efficient single-snapshot multidimensional harmonic retrieval.
A novel method for converting the complex-valued convolutional layers and activations into spiking neural networks (SNNs) is developed.
The converted SNNs achieve almost five-fold power efficiency at moderate performance loss compared to the original CNNs.
arXiv Detail & Related papers (2024-12-05T09:41:33Z) - Multi-Modality Conditioned Variational U-Net for Field-of-View Extension in Brain Diffusion MRI [10.096809077954095]
An incomplete field-of-view (FOV) in diffusion magnetic resonance imaging (dMRI) can severely hinder the volumetric and bundle analyses of whole-brain white matter connectivity.
We propose a novel framework for imputing dMRI scans in the incomplete part of the FOV by integrating the learned diffusion features in the acquired part of the FOV to the complete brain anatomical structure.
arXiv Detail & Related papers (2024-09-20T18:41:29Z) - DDEvENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI [5.757390718589337]
EVENet is an Evidence-based Ensemble Neural Network for anatomical brain parcellation using diffusion MRI.<n>We obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations.<n>Thanks to the uncertainty estimation, our EVENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions.
arXiv Detail & Related papers (2024-09-11T05:26:23Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Guided Reconstruction with Conditioned Diffusion Models for Unsupervised Anomaly Detection in Brain MRIs [35.46541584018842]
Unsupervised Anomaly Detection (UAD) aims to identify any anomaly as an outlier from a healthy training distribution.<n>generative models are used to learn the reconstruction of healthy brain anatomy for a given input image.<n>We propose conditioning the denoising process of diffusion models with additional information derived from a latent representation of the input image.
arXiv Detail & Related papers (2023-12-07T11:03:42Z) - ssVERDICT: Self-Supervised VERDICT-MRI for Enhanced Prostate Tumour
Characterisation [2.755232740505053]
Self-supervised neural network for fitting VERDICT estimates parameter maps without training data.
We compare the performance of ssVERDICT to two established baseline methods for fitting diffusion MRI models.
arXiv Detail & Related papers (2023-09-12T14:31:33Z) - Preserved Edge Convolutional Neural Network for Sensitivity Enhancement
of Deuterium Metabolic Imaging (DMI) [10.884358837187243]
This work presents a deep learning method for sensitivity enhancement of Deuterium Metabolic Imaging (DMI)
A convolutional neural network (CNN) was designed to estimate the 2H-labeled metabolite concentrations from low SNR.
The estimation precision was further improved by fine-tuning the CNN with MRI-based edge-preserving regularization for each DMI dataset.
arXiv Detail & Related papers (2023-09-08T03:41:54Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Scale-Equivariant Unrolled Neural Networks for Data-Efficient
Accelerated MRI Reconstruction [33.82162420709648]
We propose modeling the proximal operators of unrolled neural networks with scale-equivariant convolutional neural networks.
Our approach demonstrates strong improvements over the state-of-the-art unrolled neural networks under the same memory constraints.
arXiv Detail & Related papers (2022-04-21T23:29:52Z) - A Pathology-Based Machine Learning Method to Assist in Epithelial
Dysplasia Diagnosis [0.0]
The Epithelial Dysplasia (ED) is a tissue alteration commonly present in lesions preceding oral cancer.
This study proposes a method to design a low computational cost classification system to support the detection of dysplastic epithelia.
arXiv Detail & Related papers (2022-04-07T16:45:28Z) - Deep Implicit Statistical Shape Models for 3D Medical Image Delineation [47.78425002879612]
3D delineation of anatomical structures is a cardinal goal in medical imaging analysis.
Prior to deep learning, statistical shape models that imposed anatomical constraints and produced high quality surfaces were a core technology.
We present deep implicit statistical shape models (DISSMs), a new approach to delineation that marries the representation power of CNNs with the robustness of SSMs.
arXiv Detail & Related papers (2021-04-07T01:15:06Z) - Towards learned optimal q-space sampling in diffusion MRI [1.5640063295947522]
We propose a unified estimation framework for fiber tractography.
The proposed solution offers substantial improvements in the quality of signal estimation as well as the accuracy of ensuing analysis.
We present a comprehensive comparative analysis based on the Human Connectome Project data.
arXiv Detail & Related papers (2020-09-07T10:46:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.