論文の概要: Driving Tasks Transfer in Deep Reinforcement Learning for
Decision-making of Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2009.03268v2
- Date: Sat, 10 Oct 2020 14:16:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-21 02:21:57.052646
- Title: Driving Tasks Transfer in Deep Reinforcement Learning for
Decision-making of Autonomous Vehicles
- Title(参考訳): 自動車の意思決定のための深層強化学習における運転課題伝達
- Authors: Hong Shu, Teng Liu, Xingyu Mu, Dongpu Cao
- Abstract要約: 本稿では,区間間環境における運転タスクを変換するための伝達深度強化学習フレームワークを構築した。
自走自走車(AEV)の目標は、交差点の状況を効率的かつ安全に通り抜けることである。
同様のタスクに関連する意思決定戦略は、転送可能である。
- 参考スコア(独自算出の注目度): 6.578495322360851
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge transfer is a promising concept to achieve real-time
decision-making for autonomous vehicles. This paper constructs a transfer deep
reinforcement learning framework to transform the driving tasks in
inter-section environments. The driving missions at the un-signalized
intersection are cast into a left turn, right turn, and running straight for
automated vehicles. The goal of the autonomous ego vehicle (AEV) is to drive
through the intersection situation efficiently and safely. This objective
promotes the studied vehicle to increase its speed and avoid crashing other
vehicles. The decision-making pol-icy learned from one driving task is
transferred and evaluated in another driving mission. Simulation results reveal
that the decision-making strategies related to similar tasks are transferable.
It indicates that the presented control framework could reduce the time
consumption and realize online implementation.
- Abstract(参考訳): 知識伝達は、自動運転車のリアルタイム意思決定を実現するための有望な概念である。
本稿では,区間間環境における運転タスクを変換するトランスファー深層強化学習フレームワークを構築した。
信号のない交差点での運転ミッションは左折、右折、そして自動走行車に直行される。
自走自走車(AEV)の目標は、交差点の状況を効率的かつ安全に通り抜けることである。
この目的により、実験車両は速度を上げ、他の車両の衝突を避けることができる。
ある運転課題から学んだ意思決定ポリイは、別の運転ミッションで転送され評価される。
シミュレーションの結果,類似タスクに関連する意思決定戦略が伝達可能であることが明らかとなった。
提案する制御フレームワークは、時間消費を削減し、オンライン実装を実現することができる。
関連論文リスト
- Deep Q-Network Based Decision Making for Autonomous Driving [1.0152838128195467]
本稿では,Q-Networksと制御理論からの洞察を組み合わせることで,高速道路のシナリオで自動運転車を安全にナビゲートする方法を提案する。
ディープQネットワークは、軌道プランナーの目標を提案することにより、中心的な意思決定ユニットとして機能するようにシミュレーションで訓練される。
経年移動のための制御装置と組み合わせて生成された軌道を用いて車線変更操作を行う。
論文 参考訳(メタデータ) (2023-03-21T07:01:22Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - Prediction Based Decision Making for Autonomous Highway Driving [3.6818636539023175]
本稿では,予測に基づく深層強化学習(Deep Reinforcement Learning, PDRL)意思決定モデルを提案する。
高速道路運転の意思決定プロセスにおいて、周囲の車両の操作意図を考慮に入れている。
その結果,提案したPDRLモデルでは,衝突数を減少させることで,Deep Reinforcement Learning (DRL)モデルと比較して意思決定性能が向上することがわかった。
論文 参考訳(メタデータ) (2022-09-05T19:28:30Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
本研究では,加速と操舵角度を予測するニューラルネットワークを学習するモデルレスディープ強化学習プランナを提案する。
実際の自動運転車にシステムをデプロイするために、我々は小さなニューラルネットワークで表されるモジュールも開発する。
論文 参考訳(メタデータ) (2022-07-05T16:33:20Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
本稿では,コミュニケーション・センシングにおける制御戦略と現実的限界のギャップを埋める上で,模倣学習が果たす役割について考察する。
擬似学習は、車両の5%に採用されれば、局地的な観測のみを用いて、交通条件の異なるネットワークのエネルギー効率を15%向上させる政策を導出できることを示す。
論文 参考訳(メタデータ) (2022-06-28T17:08:31Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Parallelized and Randomized Adversarial Imitation Learning for
Safety-Critical Self-Driving Vehicles [11.463476667274051]
運転システムを安全に制御するために、信頼性の高いADAS機能調整を検討することが不可欠である。
本稿では,RAILアルゴリズムを提案する。
提案手法は, LIDARデータを扱う意思決定者を訓練し, 多車線複合高速道路環境における自律走行を制御できる。
論文 参考訳(メタデータ) (2021-12-26T23:42:49Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z) - A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the
First CARLA Autonomous Driving Challenge [49.976633450740145]
本稿では,シミュレーション都市環境における自律走行車両のナビゲーション設計について述べる。
我々のアーキテクチャは、CARLA Autonomous Driving Challengeの要件を満たすために作られました。
論文 参考訳(メタデータ) (2020-10-23T18:07:48Z) - Decision-making at Unsignalized Intersection for Autonomous Vehicles:
Left-turn Maneuver with Deep Reinforcement Learning [17.715274169051494]
本研究は、自動運転車の信号なし交差点における深層強化学習に基づく左旋回意思決定フレームワークを提案する。
提案した意思決定戦略は、衝突率を効果的に低減し、輸送効率を向上させることができる。
この研究は、構築された左旋回制御構造がリアルタイムに適用可能な大きな可能性を持っていることも明らかにした。
論文 参考訳(メタデータ) (2020-08-14T22:44:26Z) - Dueling Deep Q Network for Highway Decision Making in Autonomous
Vehicles: A Case Study [9.602219035367066]
本研究は、深部強化学習(DRL)を用いた自動運転車の高速道路意思決定戦略を最適化するものである。
最適制御問題として、自動車両のオーバーテイク決定問題を定式化する。
シミュレーションの結果,エゴ車両は学習および訓練後の運転課題を安全かつ効率的に達成できることが判明した。
論文 参考訳(メタデータ) (2020-07-16T14:09:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。