On the Self-Repair Role of Astrocytes in STDP Enabled Unsupervised SNNs
- URL: http://arxiv.org/abs/2009.03473v2
- Date: Mon, 16 Nov 2020 15:52:15 GMT
- Title: On the Self-Repair Role of Astrocytes in STDP Enabled Unsupervised SNNs
- Authors: Mehul Rastogi, Sen Lu, Nafiul Islam, Abhronil Sengupta
- Abstract summary: This work goes beyond the focus of current neuromorphic computing architectures on computational models for neuron and synapse.
We explore the role of glial cells in fault-tolerant capacity of Spiking Neural Networks trained in an unsupervised fashion using Spike-Timing Dependent Plasticity (STDP)
We characterize the degree of self-repair that can be enabled in such networks with varying degree of faults ranging from 50% - 90% and evaluate our proposal on the MNIST and Fashion-MNIST datasets.
- Score: 1.0009912692042526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuromorphic computing is emerging to be a disruptive computational paradigm
that attempts to emulate various facets of the underlying structure and
functionalities of the brain in the algorithm and hardware design of
next-generation machine learning platforms. This work goes beyond the focus of
current neuromorphic computing architectures on computational models for neuron
and synapse to examine other computational units of the biological brain that
might contribute to cognition and especially self-repair. We draw inspiration
and insights from computational neuroscience regarding functionalities of glial
cells and explore their role in the fault-tolerant capacity of Spiking Neural
Networks (SNNs) trained in an unsupervised fashion using Spike-Timing Dependent
Plasticity (STDP). We characterize the degree of self-repair that can be
enabled in such networks with varying degree of faults ranging from 50% - 90%
and evaluate our proposal on the MNIST and Fashion-MNIST datasets.
Related papers
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Growing Brains: Co-emergence of Anatomical and Functional Modularity in
Recurrent Neural Networks [18.375521792153112]
Recurrent neural networks (RNNs) trained on compositional tasks can exhibit functional modularity.
We apply a recent machine learning method, brain-inspired modular training, to a network being trained to solve a set of compositional cognitive tasks.
We find that functional and anatomical clustering emerge together, such that functionally similar neurons also become spatially localized and interconnected.
arXiv Detail & Related papers (2023-10-11T17:58:25Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Astromorphic Self-Repair of Neuromorphic Hardware Systems [0.8958368012475248]
This paper attempts to explore the self-repair role of glial cells, in particular, astrocytes.
Hardware-software co-design analysis reveals that bio-morphic astrocytic regulation has the potential to self-repair hardware realistic faults.
arXiv Detail & Related papers (2022-09-15T16:23:45Z) - Spatiotemporal Patterns in Neurobiology: An Overview for Future
Artificial Intelligence [0.0]
We argue that computational models are key tools for elucidating possible functionalities that emerge from network interactions.
Here we review several classes of models including spiking neurons, integrate and fire neurons.
We hope these studies will inform future developments in artificial intelligence algorithms as well as help validate our understanding of brain processes.
arXiv Detail & Related papers (2022-03-29T10:28:01Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics
Organized by Astrocyte-modulated Plasticity [0.0]
Liquid state machine (LSM) tunes internal weights without backpropagation of gradients.
Recent findings suggest that astrocytes, a long-neglected non-neuronal brain cell, modulate synaptic plasticity and brain dynamics.
We propose the neuron-astrocyte liquid state machine (NALSM) that addresses under-performance through self-organized near-critical dynamics.
arXiv Detail & Related papers (2021-10-26T23:04:40Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.