Core-Periphery Principle Guided State Space Model for Functional Connectome Classification
- URL: http://arxiv.org/abs/2503.14655v1
- Date: Tue, 18 Mar 2025 19:03:27 GMT
- Title: Core-Periphery Principle Guided State Space Model for Functional Connectome Classification
- Authors: Minheng Chen, Xiaowei Yu, Jing Zhang, Tong Chen, Chao Cao, Yan Zhuang, Yanjun Lyu, Lu Zhang, Tianming Liu, Dajiang Zhu,
- Abstract summary: Core-Periphery State-Space Model (CP-SSM) is an innovative framework for functional connectome classification.<n>Mamba, a selective state-space model with linear complexity, to effectively capture long-range dependencies in functional brain networks.<n>CP-SSM surpasses Transformer-based models in classification performance while significantly reducing computational complexity.
- Score: 30.044545011553172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the organization of human brain networks has become a central focus in neuroscience, particularly in the study of functional connectivity, which plays a crucial role in diagnosing neurological disorders. Advances in functional magnetic resonance imaging and machine learning techniques have significantly improved brain network analysis. However, traditional machine learning approaches struggle to capture the complex relationships between brain regions, while deep learning methods, particularly Transformer-based models, face computational challenges due to their quadratic complexity in long-sequence modeling. To address these limitations, we propose a Core-Periphery State-Space Model (CP-SSM), an innovative framework for functional connectome classification. Specifically, we introduce Mamba, a selective state-space model with linear complexity, to effectively capture long-range dependencies in functional brain networks. Furthermore, inspired by the core-periphery (CP) organization, a fundamental characteristic of brain networks that enhances efficient information transmission, we design CP-MoE, a CP-guided Mixture-of-Experts that improves the representation learning of brain connectivity patterns. We evaluate CP-SSM on two benchmark fMRI datasets: ABIDE and ADNI. Experimental results demonstrate that CP-SSM surpasses Transformer-based models in classification performance while significantly reducing computational complexity. These findings highlight the effectiveness and efficiency of CP-SSM in modeling brain functional connectivity, offering a promising direction for neuroimaging-based neurological disease diagnosis.
Related papers
- BrainMAP: Learning Multiple Activation Pathways in Brain Networks [77.15180533984947]
We introduce a novel framework BrainMAP to learn Multiple Activation Pathways in Brain networks.<n>Our framework enables explanatory analyses of crucial brain regions involved in tasks.
arXiv Detail & Related papers (2024-12-23T09:13:35Z) - Generative forecasting of brain activity enhances Alzheimer's classification and interpretation [16.09844316281377]
Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive method to monitor neural activity.
Deep learning has shown promise in capturing these representations.
In this study, we focus on time series forecasting of independent component networks derived from rs-fMRI as a form of data augmentation.
arXiv Detail & Related papers (2024-10-30T23:51:31Z) - Brain-like Functional Organization within Large Language Models [58.93629121400745]
The human brain has long inspired the pursuit of artificial intelligence (AI)
Recent neuroimaging studies provide compelling evidence of alignment between the computational representation of artificial neural networks (ANNs) and the neural responses of the human brain to stimuli.
In this study, we bridge this gap by directly coupling sub-groups of artificial neurons with functional brain networks (FBNs)
This framework links the AN sub-groups to FBNs, enabling the delineation of brain-like functional organization within large language models (LLMs)
arXiv Detail & Related papers (2024-10-25T13:15:17Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - BrainMAE: A Region-aware Self-supervised Learning Framework for Brain Signals [11.030708270737964]
We propose Brain Masked Auto-Encoder (BrainMAE) for learning representations directly from fMRI time-series data.
BrainMAE consistently outperforms established baseline methods by significant margins in four distinct downstream tasks.
arXiv Detail & Related papers (2024-06-24T19:16:24Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Transformer-Based Hierarchical Clustering for Brain Network Analysis [13.239896897835191]
We propose a novel interpretable transformer-based model for joint hierarchical cluster identification and brain network classification.
With the help of hierarchical clustering, the model achieves increased accuracy and reduced runtime complexity while providing plausible insight into the functional organization of brain regions.
arXiv Detail & Related papers (2023-05-06T22:14:13Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Increasing Liquid State Machine Performance with Edge-of-Chaos Dynamics
Organized by Astrocyte-modulated Plasticity [0.0]
Liquid state machine (LSM) tunes internal weights without backpropagation of gradients.
Recent findings suggest that astrocytes, a long-neglected non-neuronal brain cell, modulate synaptic plasticity and brain dynamics.
We propose the neuron-astrocyte liquid state machine (NALSM) that addresses under-performance through self-organized near-critical dynamics.
arXiv Detail & Related papers (2021-10-26T23:04:40Z) - On the Self-Repair Role of Astrocytes in STDP Enabled Unsupervised SNNs [1.0009912692042526]
This work goes beyond the focus of current neuromorphic computing architectures on computational models for neuron and synapse.
We explore the role of glial cells in fault-tolerant capacity of Spiking Neural Networks trained in an unsupervised fashion using Spike-Timing Dependent Plasticity (STDP)
We characterize the degree of self-repair that can be enabled in such networks with varying degree of faults ranging from 50% - 90% and evaluate our proposal on the MNIST and Fashion-MNIST datasets.
arXiv Detail & Related papers (2020-09-08T01:14:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.