論文の概要: TaBooN -- Boolean Network Synthesis Based on Tabu Search
- arxiv url: http://arxiv.org/abs/2009.03587v1
- Date: Tue, 8 Sep 2020 08:56:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 21:39:04.675220
- Title: TaBooN -- Boolean Network Synthesis Based on Tabu Search
- Title(参考訳): TaBooN - Tabu Searchに基づくブールネットワーク合成
- Authors: Sara Sadat Aghamiri, Franck Delaplace
- Abstract要約: Omics-Technologyは、複数の次元とスケールで分子データを生成することによって生物学の研究に革命をもたらした。
生物学的ネットワークは、遺伝子やタンパク質などのコンポーネントを参照するノードと、それらの相互作用を形式化するエッジ/弧から構成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in Omics-technologies revolutionized the investigation of
biology by producing molecular data in multiple dimensions and scale. This
breakthrough in biology raises the crucial issue of their interpretation based
on modelling. In this undertaking, network provides a suitable framework for
modelling the interactions between molecules. Basically a Biological network is
composed of nodes referring to the components such as genes or proteins, and
the edges/arcs formalizing interactions between them. The evolution of the
interactions is then modelled by the definition of a dynamical system. Among
the different categories of network, the Boolean network offers a reliable
qualitative framework for the modelling. Automatically synthesizing a Boolean
network from experimental data therefore remains a necessary but challenging
issue. In this study, we present taboon, an original work-flow for synthesizing
Boolean Networks from biological data. The methodology uses the data in the
form of Boolean profiles for inferring all the potential local formula
inference. They combine to form the model space from which the most truthful
model with regards to biological knowledge and experiments must be found. In
the taboon work-flow the selection of the fittest model is achieved by a
Tabu-search algorithm. taboon is an automated method for Boolean Network
inference from experimental data that can also assist to evaluate and optimize
the dynamic behaviour of the biological networks providing a reliable platform
for further modelling and predictions.
- Abstract(参考訳): Omics-Technologyの最近の発展は、複数の次元とスケールで分子データを生成することによって生物学の研究に革命をもたらした。
この生物学のブレークスルーは、モデリングに基づく解釈の重要な問題を提起する。
この取り組みにおいて、ネットワークは分子間の相互作用をモデル化するための適切なフレームワークを提供する。
基本的に生物学的ネットワークは、遺伝子やタンパク質などのコンポーネントを参照するノードと、それらの相互作用を形式化するエッジ/弧から構成される。
相互作用の進化は、力学系の定義によってモデル化される。
ネットワークのさまざまなカテゴリのうち、booleanネットワークはモデリングの信頼性の高い定性フレームワークを提供する。
したがって、Booleanネットワークを実験データから自動的に合成することは、必要だが難しい問題である。
本研究では,生物データからブールネットワークを合成する作業フローであるタブーンを提案する。
この手法はブールプロファイルの形でデータを使用し、潜在的な局所的な公式推論をすべて推測する。
それらは結合して、生物の知識と実験に関する最も真正なモデルを見つける必要があるモデル空間を形成する。
タブーンワークフローにおいて、fittestモデルの選択は、タブ探索アルゴリズムによって達成される。
taboonは実験データからブールネットワーク推論を自動化する自動手法であり、さらなるモデリングと予測のための信頼できるプラットフォームを提供する生物学的ネットワークの動的動作の評価と最適化を支援する。
関連論文リスト
- Causal Representation Learning from Multimodal Biological Observations [57.00712157758845]
我々は,マルチモーダルデータに対するフレキシブルな識別条件の開発を目指している。
我々は、各潜伏成分の識別可能性を保証するとともに、サブスペース識別結果を事前の作業から拡張する。
我々の重要な理論的要素は、異なるモーダル間の因果関係の構造的空間性である。
論文 参考訳(メタデータ) (2024-11-10T16:40:27Z) - Don't Cut Corners: Exact Conditions for Modularity in Biologically Inspired Representations [52.48094670415497]
我々は、生物にインスパイアされた表現が、ソース変数(ソース)に関してモジュール化されるときの理論を開発する。
我々は、最適な生物学的にインスパイアされたリニアオートエンコーダのニューロンがモジュラー化されるかどうかを判断する情報源のサンプルに対して、必要かつ十分な条件を導出する。
我々の理論はどんなデータセットにも当てはまり、以前の研究で研究された統計的な独立性よりもはるかに長い。
論文 参考訳(メタデータ) (2024-10-08T17:41:37Z) - PhyloGFN: Phylogenetic inference with generative flow networks [57.104166650526416]
本稿では,系統学における2つの中核的問題に対処するための生成フローネットワーク(GFlowNets)の枠組みを紹介する。
GFlowNetsは複雑な構造をサンプリングするのに適しているため、木トポロジー上の多重モード後部分布を探索し、サンプリングするのに自然な選択である。
我々は, 実際のベンチマークデータセット上で, 様々な, 高品質な進化仮説を生成できることを実証した。
論文 参考訳(メタデータ) (2023-10-12T23:46:08Z) - A Generative Modeling Framework for Inferring Families of Biomechanical
Constitutive Laws in Data-Sparse Regimes [0.15658704610960567]
本稿では,データスパース体制における関係の家族を効率的に推定する新しい手法を提案する。
機能的先行概念に着想を得て,ニューラル演算子をジェネレータとし,完全接続ネットワークを敵判別器として組み込んだ生成ネットワーク(GAN)を開発した。
論文 参考訳(メタデータ) (2023-05-04T22:07:27Z) - Predicting Biomedical Interactions with Probabilistic Model Selection
for Graph Neural Networks [5.156812030122437]
現在の生物学的ネットワークは、ノイズ、スパース、不完全であり、そのような相互作用の実験的同定には時間と費用がかかる。
ディープグラフニューラルネットワークは、グラフ構造データモデリングの有効性を示し、バイオメディカル相互作用予測において優れた性能を達成した。
提案手法により,グラフ畳み込みネットワークは,その深度を動的に適応し,対話数の増加に対応することができる。
論文 参考訳(メタデータ) (2022-11-22T20:44:28Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Generalized Shape Metrics on Neural Representations [26.78835065137714]
表現上の相似性を定量化する計量空間の族を提供する。
我々は、正準相関解析に基づいて既存の表現類似度尺度を修正し、三角形の不等式を満たす。
解剖学的特徴とモデル性能の観点から解釈可能な神経表現の関係を同定する。
論文 参考訳(メタデータ) (2021-10-27T19:48:55Z) - Inference of cell dynamics on perturbation data using adjoint
sensitivity [4.606583317143614]
データ駆動型細胞生物学のダイナミックモデルを用いて、目に見えない摂動に対する細胞の反応を予測することができる。
最近の研究は、明示的な相互作用項を持つ解釈可能なモデルの導出を実証した。
本研究は,このモデル推論手法の適用範囲を生物システムの多様性に拡張することを目的としている。
論文 参考訳(メタデータ) (2021-04-13T19:15:56Z) - Design of Experiments for Verifying Biomolecular Networks [12.788443087394239]
分子生物学や合成生物学のトレンドは、生体分子ネットワークの設計に機械的(非機械学習)モデルを使用することである。
これらのネットワークは、理論的ネットワークが真のシステムを正しくモデル化することを保証するために、実験結果によって検証される必要がある。
本稿では,これらのネットワークを効率的に検証するための実験手法を提案する。
論文 参考訳(メタデータ) (2020-11-20T13:39:45Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。