Deep Cyclic Generative Adversarial Residual Convolutional Networks for
Real Image Super-Resolution
- URL: http://arxiv.org/abs/2009.03693v1
- Date: Mon, 7 Sep 2020 11:11:18 GMT
- Title: Deep Cyclic Generative Adversarial Residual Convolutional Networks for
Real Image Super-Resolution
- Authors: Rao Muhammad Umer, Christian Micheloni
- Abstract summary: We consider a deep cyclic network structure to maintain the domain consistency between the LR and HR data distributions.
We propose the Super-Resolution Residual Cyclic Generative Adversarial Network (SRResCycGAN) by training with a generative adversarial network (GAN) framework for the LR to HR domain translation.
- Score: 20.537597542144916
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recent deep learning based single image super-resolution (SISR) methods
mostly train their models in a clean data domain where the low-resolution (LR)
and the high-resolution (HR) images come from noise-free settings (same domain)
due to the bicubic down-sampling assumption. However, such degradation process
is not available in real-world settings. We consider a deep cyclic network
structure to maintain the domain consistency between the LR and HR data
distributions, which is inspired by the recent success of CycleGAN in the
image-to-image translation applications. We propose the Super-Resolution
Residual Cyclic Generative Adversarial Network (SRResCycGAN) by training with a
generative adversarial network (GAN) framework for the LR to HR domain
translation in an end-to-end manner. We demonstrate our proposed approach in
the quantitative and qualitative experiments that generalize well to the real
image super-resolution and it is easy to deploy for the mobile/embedded
devices. In addition, our SR results on the AIM 2020 Real Image SR Challenge
datasets demonstrate that the proposed SR approach achieves comparable results
as the other state-of-art methods.
Related papers
- Low-Res Leads the Way: Improving Generalization for Super-Resolution by
Self-Supervised Learning [45.13580581290495]
This work introduces a novel "Low-Res Leads the Way" (LWay) training framework to enhance the adaptability of SR models to real-world images.
Our approach utilizes a low-resolution (LR) reconstruction network to extract degradation embeddings from LR images, merging them with super-resolved outputs for LR reconstruction.
Our training regime is universally compatible, requiring no network architecture modifications, making it a practical solution for real-world SR applications.
arXiv Detail & Related papers (2024-03-05T02:29:18Z) - ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
Single image super-resolution (SISR) is a challenging problem that aims to up-sample a given low-resolution (LR) image to a high-resolution (HR) counterpart.
Recent approaches are trained on simulated LR images degraded by simplified down-sampling operators.
We propose a novel Invertible scale-Conditional Function (ICF) which can scale an input image and then restore the original input with different scale conditions.
arXiv Detail & Related papers (2023-07-24T12:42:45Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation.
Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels.
We propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
arXiv Detail & Related papers (2022-12-15T04:34:57Z) - Real-World Image Super Resolution via Unsupervised Bi-directional Cycle
Domain Transfer Learning based Generative Adversarial Network [14.898170534545727]
We propose the Unsupervised Bi-directional Cycle Domain Transfer Learning-based Generative Adrial Network (UBCDTLGAN)
First, the UBCDTN is able to produce an approximated real-like LR image through transferring the LR image from an artificially degraded domain to the real-world image domain.
Second, the SESRN has the ability to super-resolve the approximated real-like LR image to a photo-realistic HR image.
arXiv Detail & Related papers (2022-11-19T02:19:21Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Best-Buddy GANs for Highly Detailed Image Super-Resolution [71.13466303340192]
We consider the single image super-resolution (SISR) problem, where a high-resolution (HR) image is generated based on a low-resolution (LR) input.
Most methods along this line rely on a predefined single-LR-single-HR mapping, which is not flexible enough for the SISR task.
We propose best-buddy GANs (Beby-GAN) for rich-detail SISR. Relaxing the immutable one-to-one constraint, we allow the estimated patches to dynamically seek the best supervision.
arXiv Detail & Related papers (2021-03-29T02:58:27Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Real Image Super Resolution Via Heterogeneous Model Ensemble using
GP-NAS [63.48801313087118]
We propose a new method for image superresolution using deep residual network with dense skip connections.
The proposed method won the first place in all three tracks of the AIM 2020 Real Image Super-Resolution Challenge.
arXiv Detail & Related papers (2020-09-02T22:33:23Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.