論文の概要: When Deep Learning Meets Digital Image Correlation
- arxiv url: http://arxiv.org/abs/2009.03993v1
- Date: Wed, 2 Sep 2020 19:26:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-22 18:53:42.951140
- Title: When Deep Learning Meets Digital Image Correlation
- Title(参考訳): ディープラーニングがデジタル画像相関と出会うとき
- Authors: S. Boukhtache, K. Abdelouahab, F. Berry, B. Blaysat, M. Grediac, F.
Sur
- Abstract要約: 本研究の目的は、参照画像とデフォルメ画像のペアから変位場とひずみ場を抽出できるCNNの実装である。
StrainNet と呼ばれる CNN は,この目標を達成するために開発することができる。
主な成果は、StrainNetがそのような測定を成功させ、気象学的な性能と計算時間の点で競合する結果を達成することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional Neural Networks (CNNs) constitute a class of Deep Learning
models which have been used in the recent past to resolve many problems in
computer vision, in particular optical flow estimation. Measuring displacement
and strain fields can be regarded as a particular case of this problem.
However, it seems that CNNs have never been used so far to perform such
measurements. This work is aimed at implementing a CNN able to retrieve
displacement and strain fields from pairs of reference and deformed images of a
flat speckled surface, as Digital Image Correlation (DIC) does. This paper
explains how a CNN called StrainNet can be developed to reach this goal, and
how specific ground truth datasets are elaborated to train this CNN. The main
result is that StrainNet successfully performs such measurements, and that it
achieves competing results in terms of metrological performance and computing
time. The conclusion is that CNNs like StrainNet offer a viable alternative to
DIC, especially for real-time applications.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、コンピュータビジョン、特に光フロー推定における多くの問題を解決するために近年使用されているディープラーニングモデルのクラスである。
この問題の特別な場合として、変位とひずみ場の測定が考えられる。
しかし、CNNはそのような測定を行うためにこれまで使われていないようである。
本研究は,デジタル画像相関 (dic) のように,平坦なスペックル面の対の参照画像と変形画像から変位およびひずみ場を抽出できるcnnの実装を目的としたものである。
本稿では、この目標を達成するために、StrainNetと呼ばれるCNNを開発した方法と、このCNNをトレーニングするために、特定の真実データセットがどのように精巧化されているかを説明する。
主な結果は、scherenetがそのような測定を成功させ、metrological performanceとcompute timeの点で競合する結果を達成することである。
結論として、StrainNetのようなCNNは、特にリアルタイムアプリケーションにおいて、DICに代わる実行可能な代替手段を提供している。
関連論文リスト
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - Application of Tensorized Neural Networks for Cloud Classification [0.0]
畳み込みニューラルネットワーク(CNN)は、天気予報、コンピュータビジョン、自律運転、医療画像解析など、さまざまな分野で広く利用されている。
しかし、これらの領域におけるCNNの実装と商業化は、モデルのサイズ、過度な適合、計算時間に関連する課題によって妨げられている。
モデルサイズと計算時間を削減するため,CNN内の高密度層をテンソル化することによる画期的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-21T06:28:22Z) - Training Convolutional Neural Networks with the Forward-Forward
algorithm [1.74440662023704]
Forward Forward (FF)アルゴリズムは、現在まで完全に接続されたネットワークでしか使われていない。
FFパラダイムをCNNに拡張する方法を示す。
我々のFF学習したCNNは、空間的に拡張された新しいラベリング手法を特徴とし、MNISTの手書き桁データセットにおいて99.16%の分類精度を実現している。
論文 参考訳(メタデータ) (2023-12-22T18:56:35Z) - Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
本稿では,大規模な空間問題に対する畳み込みニューラルネットワーク(CNN)の効率的なトレーニングのための新しいフレームワークを提案する。
このような信号の小さなウィンドウで訓練されたCNNは、再学習することなく、はるかに大きなウィンドウでほぼ性能を発揮することを示す。
以上の結果から,CNNは10人未満の訓練を受けた後,数百人のエージェントによる問題に対処できることが示唆された。
論文 参考訳(メタデータ) (2023-07-21T13:51:45Z) - Demystifying CNNs for Images by Matched Filters [13.121514086503591]
畳み込みニューラルネットワーク(CNN)は、ビッグデータ時代のインテリジェントマシンのアプローチと使用方法に革命をもたらしています。
CNNは、そのテキストブラックボックスの性質と、その操作の理論的サポートと物理的意味の欠如により、精査されている。
本稿では,マッチングフィルタリングの観点を用いて,CNNの動作を復調する手法を提案する。
論文 参考訳(メタデータ) (2022-10-16T12:39:17Z) - CapsNet for Medical Image Segmentation [8.612958742534673]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンにおけるタスクの解決に成功している。
CNNは回転とアフィン変換に敏感であり、その成功は巨大なラベル付きデータセットに依存している。
CapsNetは、表現学習においてより堅牢性を達成した新しいアーキテクチャである。
論文 参考訳(メタデータ) (2022-03-16T21:15:07Z) - Segmentation of Roads in Satellite Images using specially modified U-Net
CNNs [0.0]
本研究の目的は,道路画像の特定を行う都市景観の衛星画像の分類器を構築することである。
従来のコンピュータビジョンアルゴリズムとは異なり、畳み込みニューラルネットワーク(CNN)はこのタスクに対して正確で信頼性の高い結果を提供する。
論文 参考訳(メタデータ) (2021-09-29T19:08:32Z) - Continual 3D Convolutional Neural Networks for Real-time Processing of
Videos [93.73198973454944]
連続3次元コンテンポラルニューラルネットワーク(Co3D CNN)について紹介する。
Co3D CNNはクリップ・バイ・クリップではなく、フレーム・バイ・フレームで動画を処理する。
本研究では,既存の映像認識モデルの重みを初期化したCo3D CNNを用いて,フレームワイズ計算における浮動小数点演算を10.0-12.4倍削減し,Kinetics-400の精度を2.3-3.8倍に向上したことを示す。
論文 参考訳(メタデータ) (2021-05-31T18:30:52Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - SUREMap: Predicting Uncertainty in CNN-based Image Reconstruction Using
Stein's Unbiased Risk Estimate [51.67813146731196]
畳み込みニューラルネットワーク(CNN)は、コンピュータ画像再構成問題を解決する強力なツールとして登場した。
CNNはブラックボックスを理解するのが難しい。
この制限は、医療画像のような安全クリティカルな用途での利用にとって大きな障壁となる。
論文 参考訳(メタデータ) (2020-10-25T20:29:41Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
本稿では,ResNet型CNNが重要な関数クラスにおいて最小誤差率を達成可能であることを示す。
Barron と H'older のクラスに対する前述のタイプの CNN の近似と推定誤差率を導出する。
論文 参考訳(メタデータ) (2019-03-24T19:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。