論文の概要: Application of Tensorized Neural Networks for Cloud Classification
- arxiv url: http://arxiv.org/abs/2405.10946v1
- Date: Thu, 21 Mar 2024 06:28:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 08:49:26.571858
- Title: Application of Tensorized Neural Networks for Cloud Classification
- Title(参考訳): テンソル化ニューラルネットワークのクラウド分類への応用
- Authors: Alifu Xiafukaiti, Devanshu Garg, Aruto Hosaka, Koichi Yanagisawa, Yuichiro Minato, Tsuyoshi Yoshida,
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、天気予報、コンピュータビジョン、自律運転、医療画像解析など、さまざまな分野で広く利用されている。
しかし、これらの領域におけるCNNの実装と商業化は、モデルのサイズ、過度な適合、計算時間に関連する課題によって妨げられている。
モデルサイズと計算時間を削減するため,CNN内の高密度層をテンソル化することによる画期的なアプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNNs) have gained widespread usage across various fields such as weather forecasting, computer vision, autonomous driving, and medical image analysis due to its exceptional ability to extract spatial information, share parameters, and learn local features. However, the practical implementation and commercialization of CNNs in these domains are hindered by challenges related to model sizes, overfitting, and computational time. To address these limitations, our study proposes a groundbreaking approach that involves tensorizing the dense layers in the CNN to reduce model size and computational time. Additionally, we incorporate attention layers into the CNN and train it using Contrastive self-supervised learning to effectively classify cloud information, which is crucial for accurate weather forecasting. We elucidate the key characteristics of tensorized neural network (TNN), including the data compression rate, accuracy, and computational speed. The results indicate how TNN change their properties under the batch size setting.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は、気象予報、コンピュータビジョン、自律運転、医療画像解析など様々な分野で広く利用されている。
しかし、これらの領域におけるCNNの実装と商業化は、モデルのサイズ、過度な適合、計算時間に関連する課題によって妨げられている。
これらの制約に対処するため,本研究では,モデルサイズと計算時間を削減するため,CNN内の高密度層をテンソル化することによる画期的なアプローチを提案する。
さらに、注意層をCNNに組み込んで、Contrastive self-supervised learningを用いて学習し、雲の情報を効果的に分類する。
我々は、データ圧縮率、精度、計算速度を含むテンソル化ニューラルネットワーク(TNN)のキー特性を解明する。
結果は、バッチサイズ設定でTNNがどのようにプロパティを変更するかを示している。
関連論文リスト
- Transferability of Convolutional Neural Networks in Stationary Learning
Tasks [96.00428692404354]
本稿では,大規模な空間問題に対する畳み込みニューラルネットワーク(CNN)の効率的なトレーニングのための新しいフレームワークを提案する。
このような信号の小さなウィンドウで訓練されたCNNは、再学習することなく、はるかに大きなウィンドウでほぼ性能を発揮することを示す。
以上の結果から,CNNは10人未満の訓練を受けた後,数百人のエージェントによる問題に対処できることが示唆された。
論文 参考訳(メタデータ) (2023-07-21T13:51:45Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
畳み込みニューラルネットワーク(英: Convolutional Neural Network, CNN)は、画像センサが捉えた視覚画像の分析に広く用いられているディープニューラルネットワーク(DNN)のクラスである。
本稿では,組込みシステム上でのリアルタイム推論のために,既存のCNNアーキテクチャの性能を改善するために,深層畳み込みニューラルネットワークアーキテクチャの新しい変種を提案する。
論文 参考訳(メタデータ) (2021-12-01T18:20:52Z) - Mining the Weights Knowledge for Optimizing Neural Network Structures [1.995792341399967]
タスク固有のニューラルネットワーク(略してTNN)の重みを入力として使用するスイッチャーニューラルネットワーク(SNN)を導入する。
重みに含まれる知識をマイニングすることで、SNNはTNNのニューロンをオフにするスケーリング因子を出力する。
精度の面では,ベースラインネットワークやその他の構造学習手法を安定的に,かつ著しく上回っている。
論文 参考訳(メタデータ) (2021-10-11T05:20:56Z) - SpikeMS: Deep Spiking Neural Network for Motion Segmentation [7.491944503744111]
textitSpikeMSは、モーションセグメンテーションの大規模な問題に対する最初のディープエンコーダデコーダSNNアーキテクチャである。
textitSpikeMSは,テキストインクリメンタルな予測や,より少ない量のテストデータからの予測を行うことができることを示す。
論文 参考訳(メタデータ) (2021-05-13T21:34:55Z) - Examining convolutional feature extraction using Maximum Entropy (ME)
and Signal-to-Noise Ratio (SNR) for image classification [0.6875312133832078]
畳み込みニューラルネットワーク(CNN)は、関数マッピングよりも特徴抽出を専門とする。
本稿では,最大エントロピー(ME)と信号対雑音比(SNR)を用いたCNNの特徴抽出機能について検討する。
CNNの分類精度や性能は、入力データに存在する信号情報の量、複雑さ、品質に大きく依存していることを示す。
論文 参考訳(メタデータ) (2021-05-10T03:58:06Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - An Information-theoretic Visual Analysis Framework for Convolutional
Neural Networks [11.15523311079383]
CNNモデルから抽出可能なデータを整理するデータモデルを提案する。
次に、異なる状況下でエントロピーを計算する2つの方法を提案する。
我々は,モデル内の情報変化量をインタラクティブに探索する視覚解析システムCNNSlicerを開発した。
論文 参考訳(メタデータ) (2020-05-02T21:36:50Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
本稿では,ResNet型CNNが重要な関数クラスにおいて最小誤差率を達成可能であることを示す。
Barron と H'older のクラスに対する前述のタイプの CNN の近似と推定誤差率を導出する。
論文 参考訳(メタデータ) (2019-03-24T19:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。