Quantifying the Effects of COVID-19 on Mental Health Support Forums
- URL: http://arxiv.org/abs/2009.04008v1
- Date: Tue, 8 Sep 2020 21:59:08 GMT
- Title: Quantifying the Effects of COVID-19 on Mental Health Support Forums
- Authors: Laura Biester, Katie Matton, Janarthanan Rajendran, Emily Mower
Provost, Rada Mihalcea
- Abstract summary: We quantify the rate at which COVID-19 is discussed in each community, or subreddit, in order to understand levels of preoccupation with the pandemic.
Next, we examine the volume of activity in order to determine whether the quantity of people seeking online mental health support has risen.
Finally, we analyze how COVID-19 has influenced language use and topics of discussion within each subreddit.
- Score: 36.33098793087009
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The COVID-19 pandemic, like many of the disease outbreaks that have preceded
it, is likely to have a profound effect on mental health. Understanding its
impact can inform strategies for mitigating negative consequences. In this
work, we seek to better understand the effects of COVID-19 on mental health by
examining discussions within mental health support communities on Reddit.
First, we quantify the rate at which COVID-19 is discussed in each community,
or subreddit, in order to understand levels of preoccupation with the pandemic.
Next, we examine the volume of activity in order to determine whether the
quantity of people seeking online mental health support has risen. Finally, we
analyze how COVID-19 has influenced language use and topics of discussion
within each subreddit.
Related papers
- On the State of NLP Approaches to Modeling Depression in Social Media: A Post-COVID-19 Outlook [21.978924582262263]
Depression is the most widely studied mental health condition.
The COVID-19 global pandemic has had a great impact on mental health worldwide.
We present a survey on natural language processing (NLP) approaches to modeling depression in social media.
arXiv Detail & Related papers (2024-10-11T13:20:54Z) - Predicting Depression and Anxiety: A Multi-Layer Perceptron for
Analyzing the Mental Health Impact of COVID-19 [1.9809980686152868]
We introduce a multi-layer perceptron (MLP) called the COVID-19 Depression and Anxiety Predictor (CoDAP) to predict mental health trends during the COVID-19 pandemic.
Our method utilizes a comprehensive dataset, which tracked mental health symptoms weekly over ten weeks during the initial COVID-19 wave (April to June 2020) in a diverse cohort of U.S. adults.
This model not only predicts patterns of anxiety and depression during the pandemic but also unveils key insights into the interplay of demographic factors, behavioral changes, and social determinants of mental health.
arXiv Detail & Related papers (2024-03-09T22:49:04Z) - Exploring Social Media for Early Detection of Depression in COVID-19
Patients [44.76299288962596]
Detection and intervention at an early stage can reduce the risk of depression in COVID-19 patients.
We managed a dataset of COVID-19 patients that contains information about their social media activity both before and after infection.
We conducted an extensive analysis of this dataset to investigate the characteristic of COVID-19 patients with a higher risk of depression.
arXiv Detail & Related papers (2023-02-23T14:13:52Z) - Chatbots for Mental Health Support: Exploring the Impact of Emohaa on
Reducing Mental Distress in China [50.12173157902495]
The study included 134 participants, split into three groups: Emohaa (CBT-based), Emohaa (Full) and control.
Emohaa is a conversational agent that provides cognitive support through CBT-based exercises and guided conversations.
It also emotionally supports users by enabling them to vent their desired emotional problems.
arXiv Detail & Related papers (2022-09-21T08:23:40Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - Exploring COVID-19 Related Stressors Using Topic Modeling [0.0]
This study aims to apply natural language processing (NLP) on social media data to identify psychosocial stressors during COVID-19 pandemic.
We obtained dataset of 9266 Reddit posts from subreddit rCOVID19_support, from 14th Feb.
2020 to 19th July 2021.
Our result presented a dashboard to visualize the trend of prevalence of topics about covid-19 related stressors being discussed on social media platform.
arXiv Detail & Related papers (2022-01-12T20:22:43Z) - American Twitter Users Revealed Social Determinants-related Oral Health
Disparities amid the COVID-19 Pandemic [72.44305630014534]
We collected oral health-related tweets during the COVID-19 pandemic from 9,104 Twitter users across 26 states.
Women and younger adults (19-29) are more likely to talk about oral health problems.
People from counties at a higher risk of COVID-19 talk more about tooth decay/gum bleeding and chipped tooth/tooth break.
arXiv Detail & Related papers (2021-09-16T01:10:06Z) - COVID-19 Pandemic: Identifying Key Issues using Social Media and Natural
Language Processing [14.54689130381201]
Social media data can reveal public perceptions and experience with respect to the pandemic.
We analyzed COVID-19-related comments collected from six social media platforms.
We identify 34 negative themes out of which 17 are economic, socio-political, educational, and political issues.
arXiv Detail & Related papers (2020-08-23T12:05:12Z) - Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using
Social Media [14.662523926129117]
We analyze the topic and sentiment dynamics due to COVID-19 from the massive social media posts.
Some topics like stay safe home" are dominated with positive sentiment.
The others such as people death" are consistently showing negative sentiment.
arXiv Detail & Related papers (2020-07-05T12:05:30Z) - Analyzing COVID-19 on Online Social Media: Trends, Sentiments and
Emotions [44.92240076313168]
We analyze the affective trajectories of the American people and the Chinese people based on Twitter and Weibo posts between January 20th, 2020 and May 11th 2020.
By contrasting two very different countries, China and the Unites States, we reveal sharp differences in people's views on COVID-19 in different cultures.
Our study provides a computational approach to unveiling public emotions and concerns on the pandemic in real-time, which would potentially help policy-makers better understand people's need and thus make optimal policy.
arXiv Detail & Related papers (2020-05-29T09:24:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.