SoK: Certified Robustness for Deep Neural Networks
- URL: http://arxiv.org/abs/2009.04131v9
- Date: Wed, 12 Apr 2023 08:51:12 GMT
- Title: SoK: Certified Robustness for Deep Neural Networks
- Authors: Linyi Li, Tao Xie, Bo Li
- Abstract summary: Recent studies have shown that deep neural networks (DNNs) are vulnerable to adversarial attacks.
In this paper, we systematize certifiably robust approaches and related practical and theoretical implications.
We also provide the first comprehensive benchmark on existing robustness verification and training approaches on different datasets.
- Score: 13.10665264010575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Great advances in deep neural networks (DNNs) have led to state-of-the-art
performance on a wide range of tasks. However, recent studies have shown that
DNNs are vulnerable to adversarial attacks, which have brought great concerns
when deploying these models to safety-critical applications such as autonomous
driving. Different defense approaches have been proposed against adversarial
attacks, including: a) empirical defenses, which can usually be adaptively
attacked again without providing robustness certification; and b) certifiably
robust approaches, which consist of robustness verification providing the lower
bound of robust accuracy against any attacks under certain conditions and
corresponding robust training approaches. In this paper, we systematize
certifiably robust approaches and related practical and theoretical
implications and findings. We also provide the first comprehensive benchmark on
existing robustness verification and training approaches on different datasets.
In particular, we 1) provide a taxonomy for the robustness verification and
training approaches, as well as summarize the methodologies for representative
algorithms, 2) reveal the characteristics, strengths, limitations, and
fundamental connections among these approaches, 3) discuss current research
progresses, theoretical barriers, main challenges, and future directions for
certifiably robust approaches for DNNs, and 4) provide an open-sourced unified
platform to evaluate 20+ representative certifiably robust approaches.
Related papers
- Countering Backdoor Attacks in Image Recognition: A Survey and Evaluation of Mitigation Strategies [10.801476967873173]
We present a review of existing mitigation strategies designed to counter backdoor attacks in image recognition.
We conduct an extensive benchmarking of sixteen state-of-the-art approaches against eight distinct backdoor attacks.
Our results, derived from 122,236 individual experiments, indicate that while many approaches provide some level of protection, their performance can vary considerably.
arXiv Detail & Related papers (2024-11-17T23:30:01Z) - Doubly Robust Instance-Reweighted Adversarial Training [107.40683655362285]
We propose a novel doubly-robust instance reweighted adversarial framework.
Our importance weights are obtained by optimizing the KL-divergence regularized loss function.
Our proposed approach outperforms related state-of-the-art baseline methods in terms of average robust performance.
arXiv Detail & Related papers (2023-08-01T06:16:18Z) - A Theoretical Perspective on Subnetwork Contributions to Adversarial
Robustness [2.064612766965483]
This paper investigates how the adversarial robustness of a subnetwork contributes to the robustness of the entire network.
Experiments show the ability of a robust subnetwork to promote full-network robustness, and investigate the layer-wise dependencies required for this full-network robustness to be achieved.
arXiv Detail & Related papers (2023-07-07T19:16:59Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - A Comprehensive Study on Robustness of Image Classification Models:
Benchmarking and Rethinking [54.89987482509155]
robustness of deep neural networks is usually lacking under adversarial examples, common corruptions, and distribution shifts.
We establish a comprehensive benchmark robustness called textbfARES-Bench on the image classification task.
By designing the training settings accordingly, we achieve the new state-of-the-art adversarial robustness.
arXiv Detail & Related papers (2023-02-28T04:26:20Z) - Policy Smoothing for Provably Robust Reinforcement Learning [109.90239627115336]
We study the provable robustness of reinforcement learning against norm-bounded adversarial perturbations of the inputs.
We generate certificates that guarantee that the total reward obtained by the smoothed policy will not fall below a certain threshold under a norm-bounded adversarial of perturbation the input.
arXiv Detail & Related papers (2021-06-21T21:42:08Z) - Adversarial Robustness under Long-Tailed Distribution [93.50792075460336]
Adversarial robustness has attracted extensive studies recently by revealing the vulnerability and intrinsic characteristics of deep networks.
In this work we investigate the adversarial vulnerability as well as defense under long-tailed distributions.
We propose a clean yet effective framework, RoBal, which consists of two dedicated modules, a scale-invariant and data re-balancing.
arXiv Detail & Related papers (2021-04-06T17:53:08Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - A Comprehensive Evaluation Framework for Deep Model Robustness [44.20580847861682]
Deep neural networks (DNNs) have achieved remarkable performance across a wide area of applications.
They are vulnerable to adversarial examples, which motivates the adversarial defense.
This paper presents a model evaluation framework containing a comprehensive, rigorous, and coherent set of evaluation metrics.
arXiv Detail & Related papers (2021-01-24T01:04:25Z) - Benchmarking Adversarial Robustness [47.168521143464545]
We establish a comprehensive, rigorous, and coherent benchmark to evaluate adversarial robustness on image classification tasks.
Based on the evaluation results, we draw several important findings and provide insights for future research.
arXiv Detail & Related papers (2019-12-26T12:37:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.