Countering Backdoor Attacks in Image Recognition: A Survey and Evaluation of Mitigation Strategies
- URL: http://arxiv.org/abs/2411.11200v1
- Date: Sun, 17 Nov 2024 23:30:01 GMT
- Title: Countering Backdoor Attacks in Image Recognition: A Survey and Evaluation of Mitigation Strategies
- Authors: Kealan Dunnett, Reza Arablouei, Dimity Miller, Volkan Dedeoglu, Raja Jurdak,
- Abstract summary: We present a review of existing mitigation strategies designed to counter backdoor attacks in image recognition.
We conduct an extensive benchmarking of sixteen state-of-the-art approaches against eight distinct backdoor attacks.
Our results, derived from 122,236 individual experiments, indicate that while many approaches provide some level of protection, their performance can vary considerably.
- Score: 10.801476967873173
- License:
- Abstract: The widespread adoption of deep learning across various industries has introduced substantial challenges, particularly in terms of model explainability and security. The inherent complexity of deep learning models, while contributing to their effectiveness, also renders them susceptible to adversarial attacks. Among these, backdoor attacks are especially concerning, as they involve surreptitiously embedding specific triggers within training data, causing the model to exhibit aberrant behavior when presented with input containing the triggers. Such attacks often exploit vulnerabilities in outsourced processes, compromising model integrity without affecting performance on clean (trigger-free) input data. In this paper, we present a comprehensive review of existing mitigation strategies designed to counter backdoor attacks in image recognition. We provide an in-depth analysis of the theoretical foundations, practical efficacy, and limitations of these approaches. In addition, we conduct an extensive benchmarking of sixteen state-of-the-art approaches against eight distinct backdoor attacks, utilizing three datasets, four model architectures, and three poisoning ratios. Our results, derived from 122,236 individual experiments, indicate that while many approaches provide some level of protection, their performance can vary considerably. Furthermore, when compared to two seminal approaches, most newer approaches do not demonstrate substantial improvements in overall performance or consistency across diverse settings. Drawing from these findings, we propose potential directions for developing more effective and generalizable defensive mechanisms in the future.
Related papers
- Unlearning Backdoor Attacks through Gradient-Based Model Pruning [10.801476967873173]
We propose a novel approach to counter backdoor attacks by treating their mitigation as an unlearning task.
Our approach offers simplicity and effectiveness, rendering it well-suited for scenarios with limited data availability.
arXiv Detail & Related papers (2024-05-07T00:36:56Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
Multimodal contrastive learning has emerged as a powerful paradigm for building high-quality features.
backdoor attacks subtly embed malicious behaviors within the model during training.
We introduce an innovative token-based localized forgetting training regime.
arXiv Detail & Related papers (2024-03-24T18:33:15Z) - Model X-ray:Detecting Backdoored Models via Decision Boundary [62.675297418960355]
Backdoor attacks pose a significant security vulnerability for deep neural networks (DNNs)
We propose Model X-ray, a novel backdoor detection approach based on the analysis of illustrated two-dimensional (2D) decision boundaries.
Our approach includes two strategies focused on the decision areas dominated by clean samples and the concentration of label distribution.
arXiv Detail & Related papers (2024-02-27T12:42:07Z) - An Extensive Study on Adversarial Attack against Pre-trained Models of
Code [14.948361027395748]
Transformer-based pre-trained models of code (PTMC) have been widely utilized and have achieved state-of-the-art performance in many mission-critical applications.
They can be vulnerable to adversarial attacks through identifier substitution or coding style transformation.
This study systematically analyzes five state-of-the-art adversarial attack approaches from three perspectives.
arXiv Detail & Related papers (2023-11-13T18:48:54Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
Our study explores up to five attack algorithms across three datasets.
We identify human-identifiable features in adversarial perturbations.
Using pixel-level annotations, we extract such features and demonstrate their ability to compromise target models.
arXiv Detail & Related papers (2023-09-28T22:31:29Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
We propose a Model-Agnostic Meta-Attack (MAMA) approach to discover stronger attack algorithms automatically.
Our method learns the in adversarial attacks parameterized by a recurrent neural network.
We develop a model-agnostic training algorithm to improve the ability of the learned when attacking unseen defenses.
arXiv Detail & Related papers (2021-10-13T13:54:24Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - A Comprehensive Evaluation Framework for Deep Model Robustness [44.20580847861682]
Deep neural networks (DNNs) have achieved remarkable performance across a wide area of applications.
They are vulnerable to adversarial examples, which motivates the adversarial defense.
This paper presents a model evaluation framework containing a comprehensive, rigorous, and coherent set of evaluation metrics.
arXiv Detail & Related papers (2021-01-24T01:04:25Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
It is well established that neural networks are vulnerable to adversarial examples, which are almost imperceptible on human vision.
Existing defenses are trend to harden the robustness of models against adversarial attacks.
We propose a novel method combined with additional noises and utilize the inconsistency strategy to detect adversarial examples.
arXiv Detail & Related papers (2020-09-06T13:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.