論文の概要: Small-floating Target Detection in Sea Clutter via Visual Feature
Classifying in the Time-Doppler Spectra
- arxiv url: http://arxiv.org/abs/2009.04185v1
- Date: Wed, 9 Sep 2020 09:35:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 11:57:35.168551
- Title: Small-floating Target Detection in Sea Clutter via Visual Feature
Classifying in the Time-Doppler Spectra
- Title(参考訳): タイムドップラースペクトルの視覚特徴分類による海クラッタの小型浮揚目標検出
- Authors: Yi Zhou, Yin Cui, Xiaoke Xu, Jidong Suo, Xiaoming Liu
- Abstract要約: 表面レーダーによる海溝内の微小な浮動物体の検出は困難である。
本稿では,海面の基盤運動の連続性について,ターゲットからの後方散乱が振動することを観察した。
LBPの特徴空間において, レーダーはターゲットを包含し, クラッタのみを有するレーダーは分離可能であることを示す。
- 参考スコア(独自算出の注目度): 24.719192219757723
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: It is challenging to detect small-floating object in the sea clutter for a
surface radar. In this paper, we have observed that the backscatters from the
target brake the continuity of the underlying motion of the sea surface in the
time-Doppler spectra (TDS) images. Following this visual clue, we exploit the
local binary pattern (LBP) to measure the variations of texture in the TDS
images. It is shown that the radar returns containing target and those only
having clutter are separable in the feature space of LBP. An unsupervised
one-class support vector machine (SVM) is then utilized to detect the deviation
of the LBP histogram of the clutter. The outiler of the detector is classified
as the target. In the real-life IPIX radar data sets, our visual feature based
detector shows favorable detection rate compared to other three existing
approaches.
- Abstract(参考訳): 表面レーダーによる海溝内の微小な浮動物体の検出は困難である。
本稿では,TDS(Time-Doppler Spectra)画像において,ターゲットからの後方散乱が海面の基盤運動の連続性を損なうことを観察した。
この視覚的手がかりに従えば、TDS画像のテクスチャの変化を測定するためにローカルバイナリパターン(LBP)を利用する。
LBPの特徴空間において, レーダーはターゲットを含み, クラッタのみを有するレーダーは分離可能であることを示す。
次に、教師なし一級支持ベクトルマシン(SVM)を用いて、クラッタのLPPヒストグラムのずれを検出する。
検出器の出力器はターゲットとして分類される。
実生活のIPIXレーダデータセットでは、我々の視覚特徴に基づく検出器は、他の3つの既存手法と比較して良好な検出率を示している。
関連論文リスト
- Multitask Learning for SAR Ship Detection with Gaussian-Mask Joint Segmentation [20.540873039361102]
本稿では,オブジェクト検出,スペックル抑制,ターゲットセグメンテーションタスクからなるSAR船舶検出のためのマルチタスク学習フレームワークを提案する。
アスペクト比重み付けによる角度分類損失を導入し、角度周期性と物体比に対処して検出精度を向上させる。
スペックル抑制タスクはデュアルフュージョンアテンション機構を使用してノイズを低減し、浅くノイズを生じさせる特徴を融合させ、ロバスト性を高める。
ターゲットセグメンテーションタスクは、回転したガウスマスクを利用して、乱雑な背景から対象領域を抽出するネットワークを支援し、画素レベルの予測により検出効率を向上させる。
論文 参考訳(メタデータ) (2024-11-21T05:10:41Z) - SpecDETR: A Transformer-based Hyperspectral Point Object Detection Network [32.7318504162588]
ハイパースペクトル目標検出(HTD)は、ハイパースペクトル画像のスペクトル情報に基づいて材料を識別し、ポイントターゲットを検出することを目的としている。
既存のHTD法は画素単位のバイナリ分類に基づいて開発されており、ポイントターゲットの特徴表現能力を制限している。
ハイパースペクトル多クラス点オブジェクト検出のための最初の専用ネットワーク SpecDETR を提案する。
我々は、SPODと呼ばれるシミュレーションされたハイパースペクトル・ポイント・オブジェクト検出ベンチマークを開発し、ハイパースペクトル・マルチクラス・ポイント・オブジェクト検出における現在のオブジェクト検出ネットワークとHTD法の性能を初めて評価・比較した。
論文 参考訳(メタデータ) (2024-05-16T14:45:06Z) - Dim Small Target Detection and Tracking: A Novel Method Based on Temporal Energy Selective Scaling and Trajectory Association [8.269449428849867]
本稿では,有効検出を実現するための時間的特徴に基づく空間的特徴と実現可能性に基づく難易度の分析を行う。
この分析により,マルチフレームを検出単位とし,時間的エネルギー選択スケーリング(TESS)に基づく検出手法を提案する。
対象画素に対して、画素を通過するターゲットは、画素によって形成される強度時間プロファイル(ITP)に弱い過渡的障害をもたらす。
適切に設計された関数を用いて、過渡的障害を増幅し、背景成分と雑音成分を抑圧し、ターゲットの軌道を多フレーム検出ユニットに出力する。
論文 参考訳(メタデータ) (2024-05-15T03:02:21Z) - Improving the Detection of Small Oriented Objects in Aerial Images [0.0]
本研究では,オブジェクト指向物体検出モデルの分類・回帰タスクを強化することにより,空中画像中の小型物体を高精度に検出する手法を提案する。
ガイド・アテンション・ロス(GALoss)とボックス・ポイント・ロス(BPLoss)の2つの損失からなるアテンション・ポイント・ネットワークを設計した。
実験結果から,小型オブジェクトインスタンスを用いた標準指向型空中データセットにおける注意点ネットワークの有効性が示された。
論文 参考訳(メタデータ) (2024-01-12T11:00:07Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images [96.66271207089096]
FCOS-LiDARは、自律走行シーンのLiDAR点雲のための完全な1段式3Dオブジェクト検出器である。
標準的な2Dコンボリューションを持つRVベースの3D検出器は、最先端のBEVベースの検出器と同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-05-27T05:42:16Z) - Anomaly Detection in Radar Data Using PointNets [7.3600716208089825]
異常なレーダーターゲットを検出するために,PointNetsに基づく手法を提案する。
本手法は都市シナリオにおける実世界のデータセットを用いて評価する。
論文 参考訳(メタデータ) (2021-09-20T10:02:24Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
小さくて散らばった物体は実世界では一般的であり、検出は困難である。
本稿では,まず,物体検出にデノナイズするアイデアを革新的に紹介する。
機能マップ上のインスタンスレベルの記述は、小さくて散らばったオブジェクトの検出を強化するために行われる。
論文 参考訳(メタデータ) (2020-04-28T06:03:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。