論文の概要: Multitask Learning for SAR Ship Detection with Gaussian-Mask Joint Segmentation
- arxiv url: http://arxiv.org/abs/2411.13847v1
- Date: Thu, 21 Nov 2024 05:10:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:19:12.393426
- Title: Multitask Learning for SAR Ship Detection with Gaussian-Mask Joint Segmentation
- Title(参考訳): ガウスマスク関節分割によるSAR船舶検出のためのマルチタスク学習
- Authors: Ming Zhao, Xin Zhang, André Kaup,
- Abstract要約: 本稿では,オブジェクト検出,スペックル抑制,ターゲットセグメンテーションタスクからなるSAR船舶検出のためのマルチタスク学習フレームワークを提案する。
アスペクト比重み付けによる角度分類損失を導入し、角度周期性と物体比に対処して検出精度を向上させる。
スペックル抑制タスクはデュアルフュージョンアテンション機構を使用してノイズを低減し、浅くノイズを生じさせる特徴を融合させ、ロバスト性を高める。
ターゲットセグメンテーションタスクは、回転したガウスマスクを利用して、乱雑な背景から対象領域を抽出するネットワークを支援し、画素レベルの予測により検出効率を向上させる。
- 参考スコア(独自算出の注目度): 20.540873039361102
- License:
- Abstract: Detecting ships in synthetic aperture radar (SAR) images is challenging due to strong speckle noise, complex surroundings, and varying scales. This paper proposes MLDet, a multitask learning framework for SAR ship detection, consisting of object detection, speckle suppression, and target segmentation tasks. An angle classification loss with aspect ratio weighting is introduced to improve detection accuracy by addressing angular periodicity and object proportions. The speckle suppression task uses a dual-feature fusion attention mechanism to reduce noise and fuse shallow and denoising features, enhancing robustness. The target segmentation task, leveraging a rotated Gaussian-mask, aids the network in extracting target regions from cluttered backgrounds and improves detection efficiency with pixel-level predictions. The Gaussian-mask ensures ship centers have the highest probabilities, gradually decreasing outward under a Gaussian distribution. Additionally, a weighted rotated boxes fusion (WRBF) strategy combines multi-direction anchor predictions, filtering anchors beyond boundaries or with high overlap but low confidence. Extensive experiments on SSDD+ and HRSID datasets demonstrate the effectiveness and superiority of MLDet.
- Abstract(参考訳): 合成開口レーダ(SAR)画像中の船を検出することは、強いスペックルノイズ、複雑な環境、様々なスケールのために困難である。
本稿では,オブジェクト検出,スペックル抑制,ターゲットセグメンテーションタスクからなる,SAR船舶検出のためのマルチタスク学習フレームワークであるMLDetを提案する。
アスペクト比重み付けによる角度分類損失を導入し、角度周期性と物体比に対処して検出精度を向上させる。
スペックル抑制タスクはデュアルフュージョンアテンション機構を使用してノイズを低減し、浅くノイズを生じさせる特徴を融合させ、ロバスト性を高める。
ターゲットセグメンテーションタスクは、回転したガウスマスクを利用して、乱雑な背景から対象領域を抽出するネットワークを支援し、画素レベルの予測により検出効率を向上させる。
ガウシアン・マスクは、船中心が最も高い確率で、ガウシアン分布の下で徐々に外向きに減少する。
さらに、重み付けされた回転箱融合(WRBF)戦略は、複数方向のアンカー予測、境界を超えたアンカーのフィルタリング、あるいは高い重なり合うが信頼性の低いアンカーのフィルタリングを組み合わせたものである。
SSDD+およびHRSIDデータセットに関する大規模な実験は、MLDetの有効性と優位性を示している。
関連論文リスト
- RSNet: A Light Framework for The Detection of Multi-scale Remote Sensing Targets [10.748210940033484]
RSNetは、SAR画像における船舶検出を強化する軽量フレームワークである。
Waveletpool-ContextGuided (WCG)は、グローバルなコンテキスト理解を導くバックボーンである。
ウェーブレットプール・スターフュージョン (WSF) は、残っているウェーブレット要素の乗算構造を用いてネックとして導入された。
論文 参考訳(メタデータ) (2024-10-30T14:46:35Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - A Real-time Faint Space Debris Detector With Learning-based LCM [4.454216126942097]
本稿では,局所コントラストと最大推定値(MLE)に基づく低SNRストリーク抽出手法を提案する。
このアルゴリズムは高速かつ高精度であり,高ダイナミックターゲット抽出における将来性を保証する。
論文 参考訳(メタデータ) (2023-09-15T08:37:28Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
既存の検出方法は、パラメータ化バウンディングボックス(BBox)を使用して(水平)オブジェクトをモデル化し、検出する。
このような機構は回転検出に有効な回帰損失を構築するのに基本的な限界があると主張する。
回転した物体をガウス分布としてモデル化することを提案する。
2次元から3次元へのアプローチを、方向推定を扱うアルゴリズム設計により拡張する。
論文 参考訳(メタデータ) (2022-09-22T07:50:48Z) - SAR-ShipNet: SAR-Ship Detection Neural Network via Bidirectional
Coordinate Attention and Multi-resolution Feature Fusion [7.323279438948967]
本稿では,ニューラルネットワークによる合成開口レーダ(SAR)画像から,事実上有意義な船舶検出問題について検討する。
本稿では,CentralNetに基づく双方向協調注意(BCA)とMRF(Multi- resolution Feature Fusion)を新たに開発したSAR-ShipNet(略してSAR-ShipNet)を提案する。
パブリックなSAR-Shipデータセットの実験結果から,SAR-ShipNetは速度と精度の両面で競争上の優位性を達成していることがわかった。
論文 参考訳(メタデータ) (2022-03-29T12:27:04Z) - Context-Preserving Instance-Level Augmentation and Deformable
Convolution Networks for SAR Ship Detection [50.53262868498824]
ランダムな方向と部分的な情報損失によるSAR画像のターゲット形状の変形は、SAR船の検出において必須の課題である。
ターゲット内の部分的な情報損失に頑健なディープネットワークをトレーニングするためのデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2022-02-14T07:01:01Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - Learning Efficient Representations for Enhanced Object Detection on
Large-scene SAR Images [16.602738933183865]
SAR(Synthetic Aperture Radar)画像のターゲットの検出と認識は難しい問題である。
近年開発されたディープラーニングアルゴリズムは,SAR画像の固有の特徴を自動的に学習することができる。
本稿では,効率的かつ堅牢なディープラーニングに基づくターゲット検出手法を提案する。
論文 参考訳(メタデータ) (2022-01-22T03:25:24Z) - MRDet: A Multi-Head Network for Accurate Oriented Object Detection in
Aerial Images [51.227489316673484]
水平アンカーから変換された指向性提案を生成するために、任意指向領域提案ネットワーク(AO-RPN)を提案する。
正確なバウンディングボックスを得るために,検出タスクを複数のサブタスクに分離し,マルチヘッドネットワークを提案する。
各ヘッドは、対応するタスクに最適な特徴を学習するために特別に設計されており、ネットワークがオブジェクトを正確に検出することができる。
論文 参考訳(メタデータ) (2020-12-24T06:36:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。