The Unbalanced Gromov Wasserstein Distance: Conic Formulation and
Relaxation
- URL: http://arxiv.org/abs/2009.04266v2
- Date: Tue, 8 Jun 2021 06:42:41 GMT
- Title: The Unbalanced Gromov Wasserstein Distance: Conic Formulation and
Relaxation
- Authors: Thibault S\'ejourn\'e, Fran\c{c}ois-Xavier Vialard and Gabriel Peyr\'e
- Abstract summary: Comparing metric measure spaces (i.e. a metric space endowed with aprobability distribution) is at the heart of many machine learning problems.
The most popular distance between such metric spaces is the metric measureGro-Wasserstein (GW) distance of which is a quadratic.
The GW formulation alleviates the comparison of metric spaces equipped with arbitrary positive measures up to isometries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Comparing metric measure spaces (i.e. a metric space endowed with
aprobability distribution) is at the heart of many machine learning problems.
The most popular distance between such metric measure spaces is
theGromov-Wasserstein (GW) distance, which is the solution of a quadratic
assignment problem. The GW distance is however limited to the comparison of
metric measure spaces endowed with a probability distribution.To alleviate this
issue, we introduce two Unbalanced Gromov-Wasserstein formulations: a distance
and a more tractable upper-bounding relaxation.They both allow the comparison
of metric spaces equipped with arbitrary positive measures up to isometries.
The first formulation is a positive and definite divergence based on a
relaxation of the mass conservation constraint using a novel type of
quadratically-homogeneous divergence. This divergence works hand in hand with
the entropic regularization approach which is popular to solve large scale
optimal transport problems. We show that the underlying non-convex optimization
problem can be efficiently tackled using a highly parallelizable and
GPU-friendly iterative scheme. The second formulation is a distance between
mm-spaces up to isometries based on a conic lifting. Lastly, we provide
numerical experiments onsynthetic examples and domain adaptation data with a
Positive-Unlabeled learning task to highlight the salient features of the
unbalanced divergence and its potential applications in ML.
Related papers
- Metric properties of partial and robust Gromov-Wasserstein distances [3.9485589956945204]
The Gromov-Wasserstein (GW) distances define a family of metrics, based on ideas from optimal transport.
GW distances are inherently sensitive to outlier noise and cannot accommodate partial matching.
We show that our new distances define true metrics, that they induce the same topology as the GW distances, and that they enjoy additional robustness to perturbations.
arXiv Detail & Related papers (2024-11-04T15:53:45Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Markovian Sliced Wasserstein Distances: Beyond Independent Projections [51.80527230603978]
We introduce a new family of SW distances, named Markovian sliced Wasserstein (MSW) distance, which imposes a first-order Markov structure on projecting directions.
We compare distances with previous SW variants in various applications such as flows, color transfer, and deep generative modeling to demonstrate the favorable performance of MSW.
arXiv Detail & Related papers (2023-01-10T01:58:15Z) - Sliced Wasserstein Variational Inference [3.405431122165563]
We propose a new variational inference method by minimizing sliced Wasserstein distance, a valid metric arising from optimal transport.
Our approximation also does not require a tractable density function of variational distributions so that approximating families can be amortized by generators like neural networks.
arXiv Detail & Related papers (2022-07-26T20:51:51Z) - Hilbert Curve Projection Distance for Distribution Comparison [34.8765820950517]
We propose a novel metric, called Hilbert curve projection (HCP) distance, to measure the distance between two probability distributions.
We show that HCP distance is a proper metric and is well-defined for probability measures with bounded supports.
Experiments on both synthetic and real-world data show that our HCP distance works as an effective surrogate of the Wasserstein distance with low complexity.
arXiv Detail & Related papers (2022-05-30T12:40:32Z) - Sobolev Transport: A Scalable Metric for Probability Measures with Graph
Metrics [25.591913014859184]
We consider probability measures supported on a graph metric space and propose a novel Sobolev transport metric.
We show that the Sobolev transport metric yields a closed-form formula for fast computation and it is negative definite.
We show that the space of probability measures endowed with this transport distance is isometric to a bounded convex set in a Euclidean space with a weighted $ell_p$ distance.
arXiv Detail & Related papers (2022-02-22T08:27:58Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
We introduce the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations.
Our main contribution is to propose a sweep line algorithm to compute AE emphexactly in log-quadratic time, where a naive implementation would be cubic.
We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations.
arXiv Detail & Related papers (2020-02-05T03:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.