Metric properties of partial and robust Gromov-Wasserstein distances
- URL: http://arxiv.org/abs/2411.02198v1
- Date: Mon, 04 Nov 2024 15:53:45 GMT
- Title: Metric properties of partial and robust Gromov-Wasserstein distances
- Authors: Jannatul Chhoa, Michael Ivanitskiy, Fushuai Jiang, Shiying Li, Daniel McBride, Tom Needham, Kaiying O'Hare,
- Abstract summary: The Gromov-Wasserstein (GW) distances define a family of metrics, based on ideas from optimal transport.
GW distances are inherently sensitive to outlier noise and cannot accommodate partial matching.
We show that our new distances define true metrics, that they induce the same topology as the GW distances, and that they enjoy additional robustness to perturbations.
- Score: 3.9485589956945204
- License:
- Abstract: The Gromov-Wasserstein (GW) distances define a family of metrics, based on ideas from optimal transport, which enable comparisons between probability measures defined on distinct metric spaces. They are particularly useful in areas such as network analysis and geometry processing, as computation of a GW distance involves solving for registration between the objects which minimizes geometric distortion. Although GW distances have proven useful for various applications in the recent machine learning literature, it has been observed that they are inherently sensitive to outlier noise and cannot accommodate partial matching. This has been addressed by various constructions building on the GW framework; in this article, we focus specifically on a natural relaxation of the GW optimization problem, introduced by Chapel et al., which is aimed at addressing exactly these shortcomings. Our goal is to understand the theoretical properties of this relaxed optimization problem, from the viewpoint of metric geometry. While the relaxed problem fails to induce a metric, we derive precise characterizations of how it fails the axioms of non-degeneracy and triangle inequality. These observations lead us to define a novel family of distances, whose construction is inspired by the Prokhorov and Ky Fan distances, as well as by the recent work of Raghvendra et al.\ on robust versions of classical Wasserstein distance. We show that our new distances define true metrics, that they induce the same topology as the GW distances, and that they enjoy additional robustness to perturbations. These results provide a mathematically rigorous basis for using our robust partial GW distances in applications where outliers and partial matching are concerns.
Related papers
- Disentangled Representation Learning with the Gromov-Monge Gap [65.73194652234848]
Learning disentangled representations from unlabelled data is a fundamental challenge in machine learning.
We introduce a novel approach to disentangled representation learning based on quadratic optimal transport.
We demonstrate the effectiveness of our approach for quantifying disentanglement across four standard benchmarks.
arXiv Detail & Related papers (2024-07-10T16:51:32Z) - Partial Gromov-Wasserstein Metric [8.503892585556901]
The Gromov-Wasserstein (GW) distance has gained increasing interest in the machine learning community in recent years.
We propose a particular case of the UGW problem, termed Partial Gromov-Wasserstein (PGW)
arXiv Detail & Related papers (2024-02-06T03:36:05Z) - Intrinsic Bayesian Cramér-Rao Bound with an Application to Covariance Matrix Estimation [49.67011673289242]
This paper presents a new performance bound for estimation problems where the parameter to estimate lies in a smooth manifold.
It induces a geometry for the parameter manifold, as well as an intrinsic notion of the estimation error measure.
arXiv Detail & Related papers (2023-11-08T15:17:13Z) - Outlier-Robust Gromov-Wasserstein for Graph Data [31.895380224961464]
We introduce a new and robust version of the Gromov-Wasserstein (GW) distance called RGW.
RGW features optimistically perturbed marginal constraints within a Kullback-Leibler divergence-based ambiguity set.
We demonstrate the effectiveness of RGW on real-world graph learning tasks, such as subgraph matching and partial shape correspondence.
arXiv Detail & Related papers (2023-02-09T12:57:29Z) - Markovian Sliced Wasserstein Distances: Beyond Independent Projections [51.80527230603978]
We introduce a new family of SW distances, named Markovian sliced Wasserstein (MSW) distance, which imposes a first-order Markov structure on projecting directions.
We compare distances with previous SW variants in various applications such as flows, color transfer, and deep generative modeling to demonstrate the favorable performance of MSW.
arXiv Detail & Related papers (2023-01-10T01:58:15Z) - Quantized Gromov-Wasserstein [10.592277756185046]
Quantized Gromov Wasserstein (qGW) is a metric that treats parts as fundamental objects and fits into a hierarchy of theoretical upper bounds for the problem.
We develop an algorithm for approximating optimal GW matchings which yields algorithmic speedups and reductions in memory complexity.
We are able to go beyond outperforming state-of-the-art and apply GW matching at scales that are an order of magnitude larger than in the existing literature.
arXiv Detail & Related papers (2021-04-05T17:03:20Z) - The Unbalanced Gromov Wasserstein Distance: Conic Formulation and
Relaxation [0.0]
Comparing metric measure spaces (i.e. a metric space endowed with aprobability distribution) is at the heart of many machine learning problems.
The most popular distance between such metric spaces is the metric measureGro-Wasserstein (GW) distance of which is a quadratic.
The GW formulation alleviates the comparison of metric spaces equipped with arbitrary positive measures up to isometries.
arXiv Detail & Related papers (2020-09-09T12:38:14Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - On Projection Robust Optimal Transport: Sample Complexity and Model
Misspecification [101.0377583883137]
Projection robust (PR) OT seeks to maximize the OT cost between two measures by choosing a $k$-dimensional subspace onto which they can be projected.
Our first contribution is to establish several fundamental statistical properties of PR Wasserstein distances.
Next, we propose the integral PR Wasserstein (IPRW) distance as an alternative to the PRW distance, by averaging rather than optimizing on subspaces.
arXiv Detail & Related papers (2020-06-22T14:35:33Z) - Theoretical Guarantees for Bridging Metric Measure Embedding and Optimal
Transport [18.61019008000831]
We consider a method allowing to embed the metric measure spaces in a common Euclidean space and compute an optimal transport (OT) on the embedded distributions.
This leads to what we call a sub-embedding robust Wasserstein (SERW) distance.
arXiv Detail & Related papers (2020-02-19T17:52:01Z) - Fast and Robust Comparison of Probability Measures in Heterogeneous
Spaces [62.35667646858558]
We introduce the Anchor Energy (AE) and Anchor Wasserstein (AW) distances, which are respectively the energy and Wasserstein distances instantiated on such representations.
Our main contribution is to propose a sweep line algorithm to compute AE emphexactly in log-quadratic time, where a naive implementation would be cubic.
We show that AE and AW perform well in various experimental settings at a fraction of the computational cost of popular GW approximations.
arXiv Detail & Related papers (2020-02-05T03:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.