論文の概要: Semi-supervised Medical Image Segmentation through Dual-task Consistency
- arxiv url: http://arxiv.org/abs/2009.04448v3
- Date: Sat, 6 May 2023 06:36:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 01:40:36.104865
- Title: Semi-supervised Medical Image Segmentation through Dual-task Consistency
- Title(参考訳): Dual-task Consistencyによる半教師付き医用画像分割
- Authors: Xiangde Luo, Jieneng Chen, Tao Song, Yinan Chen, Guotai Wang, Shaoting
Zhang
- Abstract要約: 本稿では,画素単位のセグメンテーションマップと,ターゲットの幾何認識レベルセット表現を共同で予測する,新しいデュアルタスクディープネットワークを提案する。
本手法はラベルなしデータを組み込むことで性能を大幅に向上させることができる。
当フレームワークは,最先端の半教師付き医用画像分割法より優れている。
- 参考スコア(独自算出の注目度): 18.18484640332254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based semi-supervised learning (SSL) algorithms have led to
promising results in medical images segmentation and can alleviate doctors'
expensive annotations by leveraging unlabeled data. However, most of the
existing SSL algorithms in literature tend to regularize the model training by
perturbing networks and/or data. Observing that multi/dual-task learning
attends to various levels of information which have inherent prediction
perturbation, we ask the question in this work: can we explicitly build
task-level regularization rather than implicitly constructing networks- and/or
data-level perturbation-and-transformation for SSL? To answer this question, we
propose a novel dual-task-consistency semi-supervised framework for the first
time. Concretely, we use a dual-task deep network that jointly predicts a
pixel-wise segmentation map and a geometry-aware level set representation of
the target. The level set representation is converted to an approximated
segmentation map through a differentiable task transform layer. Simultaneously,
we introduce a dual-task consistency regularization between the level
set-derived segmentation maps and directly predicted segmentation maps for both
labeled and unlabeled data. Extensive experiments on two public datasets show
that our method can largely improve the performance by incorporating the
unlabeled data. Meanwhile, our framework outperforms the state-of-the-art
semi-supervised medical image segmentation methods. Code is available at:
https://github.com/Luoxd1996/DTC
- Abstract(参考訳): 深層学習に基づく半教師付き学習(SSL)アルゴリズムは、医療画像のセグメンテーションにおいて有望な結果をもたらし、ラベルのないデータを活用することで医師の高価なアノテーションを軽減することができる。
しかし、文献における既存のSSLアルゴリズムのほとんどは、摂動ネットワークやデータによるモデルのトレーニングを規則化する傾向にある。
私たちは、sslのネットワークやデータレベルの摂動および変換を暗黙的に構築するのではなく、タスクレベルの正規化を明示的に構築できますか?
この質問に答えるために、我々は初めてデュアルタスク・コンシスタンシーの半教師付きフレームワークを提案する。
具体的には,画素ワイドセグメンテーションマップとターゲットの幾何レベルセット表現を共同で予測するデュアルタスクディープネットワークを用いる。
レベルセット表現は、微分可能なタスク変換層を介して近似されたセグメンテーションマップに変換される。
同時に、ラベル付きデータとラベルなしデータの両方に対して、レベルセット由来のセグメンテーションマップと直接予測されたセグメンテーションマップの二重タスク整合正則化を導入する。
2つの公開データセットに関する広範な実験は、ラベルのないデータを組み込むことで、この手法が性能を大幅に改善できることを示している。
一方,我々のフレームワークは,最先端の半教師付き医用画像セグメンテーション手法を上回っている。
コードは、https://github.com/Luoxd1996/DTCで入手できる。
関連論文リスト
- Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
AuxSegNet+は、サリエンシマップから豊富な情報を探索する弱教師付き補助学習フレームワークである。
また,サリエンシとセグメンテーションの特徴マップから画素レベルの親和性を学習するためのクロスタスク親和性学習機構を提案する。
論文 参考訳(メタデータ) (2024-03-02T10:03:21Z) - A Semi-Paired Approach For Label-to-Image Translation [6.888253564585197]
ラベル・ツー・イメージ翻訳のための半教師付き(半ペア)フレームワークを初めて紹介する。
半ペア画像設定では、小さなペアデータとより大きなペア画像とラベルのセットにアクセスすることができる。
本稿では,この共有ネットワークのためのトレーニングアルゴリズムを提案し,非表現型クラスに着目した希少なクラスサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-23T16:13:43Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Histogram of Oriented Gradients Meet Deep Learning: A Novel Multi-task
Deep Network for Medical Image Semantic Segmentation [18.066680957993494]
医用画像セグメンテーションのための深層マルチタスク学習法を提案する。
教師なしの方法で補助作業の擬似ラベルを生成する。
本手法は, 対数部法と比較して連続的に性能を向上する。
論文 参考訳(メタデータ) (2022-04-02T23:50:29Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
そこで我々はAuxSegNetと呼ばれる弱教師付きマルチタスク・フレームワークを提案し,サリエンシ検出とマルチラベル画像分類を補助タスクとして活用する。
同様の構造的セマンティクスに着想を得て,サリエンシとセグメンテーションの表現から,クロスタスクなグローバル画素レベルの親和性マップを学習することを提案する。
学習されたクロスタスク親和性は、両方のタスクに対して改善された擬似ラベルを提供するために、唾液度予測を洗練し、CAMマップを伝播するために使用することができる。
論文 参考訳(メタデータ) (2021-07-25T11:39:58Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
本論文では,画像とラベルの再生モデルを用いた識別画素レベルのタスクのための新しいフレームワークを提案する。
我々は,共同画像ラベルの分布を捕捉し,未ラベル画像の大規模な集合を用いて効率的に訓練する生成的対向ネットワークを学習する。
ドメイン内性能をいくつかのベースラインと比較し,ドメイン外一般化を極端に示す最初の例である。
論文 参考訳(メタデータ) (2021-04-12T21:41:25Z) - Boosting Semi-supervised Image Segmentation with Global and Local Mutual
Information Regularization [9.994508738317585]
カテゴリー分布の相互情報(MI)を利用する半教師付きセグメンテーション手法を提案する。
医用画像セグメンテーションのための3つの挑戦的公開データセットについて評価を行った。
論文 参考訳(メタデータ) (2021-03-08T15:13:25Z) - Dual-Task Mutual Learning for Semi-Supervised Medical Image Segmentation [12.940103904327655]
半監督医療画像分割のための新しいデュアルタスク相互学習フレームワークを提案する。
我々のフレームワークは、2つのタスクに基づく2つの個別セグメンテーションネットワークの統合として定式化できる。
対象のセグメンテーション確率マップと符号付き距離マップを共同で学習することで,幾何学的形状制約を強制し,より信頼性の高い情報を得ることができる。
論文 参考訳(メタデータ) (2021-03-08T12:38:23Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。