論文の概要: Optimal Inspection and Maintenance Planning for Deteriorating Structural
Components through Dynamic Bayesian Networks and Markov Decision Processes
- arxiv url: http://arxiv.org/abs/2009.04547v2
- Date: Sun, 28 Nov 2021 14:37:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 12:07:44.953343
- Title: Optimal Inspection and Maintenance Planning for Deteriorating Structural
Components through Dynamic Bayesian Networks and Markov Decision Processes
- Title(参考訳): 動的ベイズネットワークとマルコフ決定過程による構造物劣化の最適検査・維持計画
- Authors: P. G. Morato, K.G. Papakonstantinou, C.P. Andriotis, J.S. Nielsen and
P. Rigo
- Abstract要約: 部分的に観測可能なマルコフ決定過程(POMDPs)は、不確実な行動結果と観測下での最適制御のための数学的方法論を提供する。
本稿では, 有限地平線POMDPを構造的信頼性の文脈で開発するための定式化について述べる。
その結果,従来の問題設定においても,POMDPのコストは従来に比べて大幅に低減した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Civil and maritime engineering systems, among others, from bridges to
offshore platforms and wind turbines, must be efficiently managed as they are
exposed to deterioration mechanisms throughout their operational life, such as
fatigue or corrosion. Identifying optimal inspection and maintenance policies
demands the solution of a complex sequential decision-making problem under
uncertainty, with the main objective of efficiently controlling the risk
associated with structural failures. Addressing this complexity, risk-based
inspection planning methodologies, supported often by dynamic Bayesian
networks, evaluate a set of pre-defined heuristic decision rules to reasonably
simplify the decision problem. However, the resulting policies may be
compromised by the limited space considered in the definition of the decision
rules. Avoiding this limitation, Partially Observable Markov Decision Processes
(POMDPs) provide a principled mathematical methodology for stochastic optimal
control under uncertain action outcomes and observations, in which the optimal
actions are prescribed as a function of the entire, dynamically updated, state
probability distribution. In this paper, we combine dynamic Bayesian networks
with POMDPs in a joint framework for optimal inspection and maintenance
planning, and we provide the formulation for developing both infinite and
finite horizon POMDPs in a structural reliability context. The proposed
methodology is implemented and tested for the case of a structural component
subject to fatigue deterioration, demonstrating the capability of
state-of-the-art point-based POMDP solvers for solving the underlying planning
optimization problem. Within the numerical experiments, POMDP and
heuristic-based policies are thoroughly compared, and results showcase that
POMDPs achieve substantially lower costs as compared to their counterparts,
even for traditional problem settings.
- Abstract(参考訳): 橋からオフショアプラットフォームや風力タービンに至るまでの土木・海洋工学システムは、疲労や腐食などの運用寿命を通じて劣化機構にさらされているため、効率的に管理されなければならない。
最適検査と維持方針の特定は、構造的障害に関連するリスクを効率的に制御することを目的として、不確実性下での複雑な逐次的意思決定問題の解を求める。
この複雑さに対処するため、リスクベースの検査計画手法は、しばしば動的ベイズネットワークによって支持され、決定問題を合理的に単純化するために予め定義されたヒューリスティックな決定ルールのセットを評価する。
しかし、結果として得られるポリシーは、決定規則の定義で考慮された限られた空間によって妥協される可能性がある。
この制限を回避するために、部分的に観測可能なマルコフ決定過程(POMDP)は、不確実な行動結果と観測の下での確率的最適制御の原理的な数学的方法論を提供し、最適動作を全状態確率分布の関数として規定する。
本稿では,動的ベイズネットワークとpomdpを統合して,最適検査と保守計画を行い,構造的信頼性の文脈で無限地平線pomdpと有限地平線pomdpの両方を開発するための定式化を行う。
提案手法は, 基礎となる計画最適化問題を解くための最先端のポイントベースpomdpソルバの能力を実証し, 疲労劣化を受ける構造成分について実装し, 実験を行った。
数値実験では,PMDPとヒューリスティック・ベースの政策を徹底的に比較し,従来の問題設定においても,PMDPのコストは従来よりも大幅に低減した。
関連論文リスト
- Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
我々はC-PGと呼ばれる探索非依存のアルゴリズムを導入し、このアルゴリズムは(弱)勾配支配仮定の下でのグローバルな最終点収束を保証する。
制約付き制御問題に対して,我々のアルゴリズムを数値的に検証し,それらを最先端のベースラインと比較する。
論文 参考訳(メタデータ) (2024-07-15T14:54:57Z) - Monte Carlo Planning for Stochastic Control on Constrained Markov Decision Processes [1.445706856497821]
本研究は,MDP フレームワークである textttSD-MDP を定義し,MDP の遷移と報酬ダイナミクスの因果構造を解析する。
モンテカルロサンプリングから独立な値推定を行うことにより、最適ポリシの下での値関数の推定誤差に関する理論的保証を導出する。
論文 参考訳(メタデータ) (2024-06-23T16:22:40Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
我々は任意の解法によって生成されるPOMDP実行から高品質なトレースを学習する。
我々は、データと時間効率のIndu Logic Programming(ILP)を利用して、解釈可能な信念に基づくポリシー仕様を生成する。
ASP(Answer Set Programming)で表現された学習は、ニューラルネットワークよりも優れた性能を示し、より少ない計算時間で最適な手作りタスクに類似していることを示す。
論文 参考訳(メタデータ) (2024-02-29T15:36:01Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Inference and dynamic decision-making for deteriorating systems with
probabilistic dependencies through Bayesian networks and deep reinforcement
learning [0.0]
劣化する環境に露呈するエンジニアリングシステムに対して,不確実性を考慮した推論と意思決定のための効率的なアルゴリズムフレームワークを提案する。
政策最適化の観点では、深層分散型マルチエージェントアクター・クリティカル(DDMAC)強化学習アプローチを採用する。
その結果、DDMACポリシーは最先端のアプローチと比較して大きな利点をもたらすことが示された。
論文 参考訳(メタデータ) (2022-09-02T14:45:40Z) - Reinforcement Learning with a Terminator [80.34572413850186]
我々は, TerMDP のパラメータを学習し, 推定問題の構造を活用し, 状態ワイドな信頼境界を提供する。
我々はこれらを用いて証明可能な効率のよいアルゴリズムを構築し、終端を考慮し、その後悔を抑える。
論文 参考訳(メタデータ) (2022-05-30T18:40:28Z) - Risk-Averse Decision Making Under Uncertainty [18.467950783426947]
不確実性条件下での意思決定は、マルコフ決定プロセス(MDP)または部分的に観測可能なMDP(POMDP)を介して記述することができる。
本稿では、動的コヒーレントリスク対策の観点から、MDPとPMDPのポリシーを目的と制約で設計する問題について考察する。
論文 参考訳(メタデータ) (2021-09-09T07:52:35Z) - Identification of Unexpected Decisions in Partially Observable
Monte-Carlo Planning: a Rule-Based Approach [78.05638156687343]
本稿では,POMCPポリシーをトレースを検査して分析する手法を提案する。
提案手法は, 政策行動の局所的特性を探索し, 予期せぬ決定を識別する。
我々は,POMDPの標準ベンチマークであるTigerに対するアプローチと,移動ロボットナビゲーションに関する現実の問題を評価した。
論文 参考訳(メタデータ) (2020-12-23T15:09:28Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z) - Deep reinforcement learning driven inspection and maintenance planning
under incomplete information and constraints [0.0]
検査・保守方針の決定は、複雑な最適化問題を構成する。
本研究は,制約付き部分観測可能決定プロセス(POMDP)と多エージェント深層強化学習(DRL)の協調フレームワーク内で,これらの課題に対処するものである。
提案手法は, 十分に確立された政策ベースラインを上回り, 検査・介入行動の適正な処方の促進を図っている。
論文 参考訳(メタデータ) (2020-07-02T20:44:07Z) - Value of structural health information in partially observable
stochastic environments [0.0]
情報の価値(VoI)と構造健康モニタリング(VoSHM)の理論的・計算的基礎を紹介し,研究する。
この結果から,POMDP政策はVoIの概念を本質的に活用し,各決定ステップにおいて最適な方法で観測行動の導出を行うことが示唆された。
論文 参考訳(メタデータ) (2019-12-28T22:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。