論文の概要: Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2407.10775v2
- Date: Mon, 11 Nov 2024 20:02:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:16:36.336133
- Title: Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning
- Title(参考訳): 制約付き強化学習のための政策勾配のラストイテレートグローバル収束
- Authors: Alessandro Montenegro, Marco Mussi, Matteo Papini, Alberto Maria Metelli,
- Abstract要約: 我々はC-PGと呼ばれる探索非依存のアルゴリズムを導入し、このアルゴリズムは(弱)勾配支配仮定の下でのグローバルな最終点収束を保証する。
制約付き制御問題に対して,我々のアルゴリズムを数値的に検証し,それらを最先端のベースラインと比較する。
- 参考スコア(独自算出の注目度): 62.81324245896717
- License:
- Abstract: Constrained Reinforcement Learning (CRL) tackles sequential decision-making problems where agents are required to achieve goals by maximizing the expected return while meeting domain-specific constraints, which are often formulated as expected costs. In this setting, policy-based methods are widely used since they come with several advantages when dealing with continuous-control problems. These methods search in the policy space with an action-based or parameter-based exploration strategy, depending on whether they learn directly the parameters of a stochastic policy or those of a stochastic hyperpolicy. In this paper, we propose a general framework for addressing CRL problems via gradient-based primal-dual algorithms, relying on an alternate ascent/descent scheme with dual-variable regularization. We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-iterate convergence guarantees under (weak) gradient domination assumptions, improving and generalizing existing results. Then, we design C-PGAE and C-PGPE, the action-based and the parameter-based versions of C-PG, respectively, and we illustrate how they naturally extend to constraints defined in terms of risk measures over the costs, as it is often requested in safety-critical scenarios. Finally, we numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines, demonstrating their effectiveness.
- Abstract(参考訳): 制約付き強化学習(CRL)は、しばしば予測コストとして定式化されるドメイン固有の制約を満たしながら、期待したリターンを最大化することで、エージェントが目標を達成するためのシーケンシャルな意思決定問題に取り組む。
この設定では、ポリシーベースの手法は、継続的制御問題に対処する際のいくつかの利点があるため、広く使われている。
これらの手法は、確率的政策のパラメータを直接学習するか、あるいは確率的超政治のパラメータを直接学習するかによって、アクションベースまたはパラメータベースの探索戦略を用いて政策空間を探索する。
本稿では,2変数正則化による漸近/退化の代替手法を頼りに,勾配に基づく主元双対アルゴリズムによるCRL問題に対処する一般的なフレームワークを提案する。
我々はC-PGと呼ばれる探索非依存のアルゴリズムを導入し、(弱)勾配支配の仮定の下でグローバルな最終点収束保証を示し、既存の結果を改善し、一般化する。
そこで我々は, C-PGAE と C-PGPE を, アクションベースとパラメータベースの C-PGPE をそれぞれ設計した。
最後に,制約付き制御問題に対するアルゴリズムの数値的検証を行い,それらを最先端のベースラインと比較し,その効果を実証する。
関連論文リスト
- Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
我々は,非漸近収束を伴う最適決定主義政策を求めるための決定主義的政策勾配原始双対法を開発した。
D-PGPDの一次-双対反復は、最適正則化原始-双対にサブ線形速度で収束することが証明された。
我々の知る限り、これは連続空間制約型MDPに対する決定論的ポリシー探索法を提案する最初の研究であると思われる。
論文 参考訳(メタデータ) (2024-08-19T14:11:04Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - Anchor-Changing Regularized Natural Policy Gradient for Multi-Objective
Reinforcement Learning [17.916366827429034]
複数の報酬値関数を持つマルコフ決定プロセス(MDP)のポリシー最適化について検討する。
本稿では,順応的な一階法からアイデアを取り入れたアンカー変更型正規化自然政策グラディエントフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-10T21:09:44Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
本稿では,正規化RLを解くためのGPMDアルゴリズムを提案する。
我々は,このアルゴリズムが次元自由な方法で,全範囲の学習率に線形に収束することを実証した。
論文 参考訳(メタデータ) (2021-05-24T02:21:34Z) - Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement
Learning via Frank-Wolfe Policy Optimization [5.072893872296332]
アクション制約強化学習(RL)は、さまざまな現実世界のアプリケーションで広く使用されているアプローチです。
本稿では,政策パラメータ更新から行動制約を分離する学習アルゴリズムを提案する。
提案アルゴリズムは,様々な制御タスクにおけるベンチマーク手法を有意に上回っていることを示した。
論文 参考訳(メタデータ) (2021-02-22T14:28:03Z) - Causal Policy Gradients [6.123324869194195]
因果ポリシー勾配(CPG)は、重要な最先端アルゴリズムを分析する共通のフレームワークを提供する。
CPGは従来の政策の勾配を一般化し、問題領域の生成過程の事前知識を組み込む原則的な方法をもたらす。
論文 参考訳(メタデータ) (2021-02-20T14:51:12Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
本研究は,リスクに敏感な深層強化学習を,分散リスク基準による平均報酬条件下で研究する試みである。
本稿では,ポリシー,ラグランジュ乗算器,フェンシェル双対変数を反復的かつ効率的に更新するアクタ批判アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T05:02:26Z) - CRPO: A New Approach for Safe Reinforcement Learning with Convergence
Guarantee [61.176159046544946]
安全強化学習(SRL)問題では、エージェントは期待される全報酬を最大化し、一定の制約の違反を避けるために環境を探索する。
これは、大域的最適ポリシーを持つSRLアルゴリズムの最初の分析である。
論文 参考訳(メタデータ) (2020-11-11T16:05:14Z) - PC-PG: Policy Cover Directed Exploration for Provable Policy Gradient
Learning [35.044047991893365]
本研究は,政策カバーグラディエント(PC-PG)アルゴリズムを導入し,政策(政策カバー)のアンサンブルを用いて,探索対搾取トレードオフのバランスをとる。
我々は,PC-PG が標準最悪の場合である $ell_infty$ の仮定を超越したモデル不特定性の下で強い保証を持つことを示す。
また、報酬なしと報酬駆動の両方の設定において、様々な領域にまたがる経験的評価で理論を補完する。
論文 参考訳(メタデータ) (2020-07-16T16:57:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。