論文の概要: Improved Robustness to Open Set Inputs via Tempered Mixup
- arxiv url: http://arxiv.org/abs/2009.04659v1
- Date: Thu, 10 Sep 2020 04:01:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-20 03:35:19.653344
- Title: Improved Robustness to Open Set Inputs via Tempered Mixup
- Title(参考訳): tempered mixup によるオープンセット入力のロバスト性の向上
- Authors: Ryne Roady, Tyler L. Hayes, Christopher Kanan
- Abstract要約: 本稿では,背景データセットを使わずにオープンセットのロバスト性を向上する簡単な正規化手法を提案する。
提案手法は,オープンセット分類ベースラインにおける最先端の成果を達成し,大規模オープンセット分類問題に容易にスケールすることができる。
- 参考スコア(独自算出の注目度): 37.98372874213471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Supervised classification methods often assume that evaluation data is drawn
from the same distribution as training data and that all classes are present
for training. However, real-world classifiers must handle inputs that are far
from the training distribution including samples from unknown classes. Open set
robustness refers to the ability to properly label samples from previously
unseen categories as novel and avoid high-confidence, incorrect predictions.
Existing approaches have focused on either novel inference methods, unique
training architectures, or supplementing the training data with additional
background samples. Here, we propose a simple regularization technique easily
applied to existing convolutional neural network architectures that improves
open set robustness without a background dataset. Our method achieves
state-of-the-art results on open set classification baselines and easily scales
to large-scale open set classification problems.
- Abstract(参考訳): 教師付き分類法は、評価データがトレーニングデータと同じ分布から引き出され、すべてのクラスがトレーニングのために存在すると仮定することが多い。
しかし、実世界の分類器は未知のクラスからのサンプルを含むトレーニング分布から遠く離れた入力を処理しなければならない。
オープンセットのロバスト性(open set robustness)とは、それまで見つからなかったカテゴリのサンプルを新規にラベル付けし、信頼性の高い不正確な予測を避ける能力を指す。
既存のアプローチは、新しい推論方法、ユニークなトレーニングアーキテクチャ、あるいはトレーニングデータを追加のバックグラウンドサンプルで補完することに焦点を当てている。
本稿では,既存の畳み込みニューラルネットワークアーキテクチャに簡単に適用可能なシンプルな正規化手法を提案する。
提案手法は,開集合分類ベースラインの最先端化と大規模開集合分類問題への拡張性を実現する。
関連論文リスト
- Classification Tree-based Active Learning: A Wrapper Approach [4.706932040794696]
本稿では,木構造にサンプリングプロセスを整理し,分類のためのラッパー能動的学習法を提案する。
ラベル付き標本の初期集合上に構築された分類木は、空間を低エントロピー領域に分解すると考えられる。
この適応は、既存のアクティブラーニング手法よりも大幅に向上することが証明されている。
論文 参考訳(メタデータ) (2024-04-15T17:27:00Z) - DE-CROP: Data-efficient Certified Robustness for Pretrained Classifiers [21.741026088202126]
そこで本研究では,いくつかのトレーニングサンプルを用いて,事前学習したモデルのロバスト性を証明する新しい手法を提案する。
提案手法は,各トレーニングサンプルに対応するクラス境界および補間標本を生成する。
複数のベンチマークデータセットのベースラインに対する大幅な改善と、課題のあるブラックボックス設定の下でも同様のパフォーマンスを報告しています。
論文 参考訳(メタデータ) (2022-10-17T10:41:18Z) - Open-Sampling: Exploring Out-of-Distribution data for Re-balancing
Long-tailed datasets [24.551465814633325]
深層ニューラルネットワークは通常、トレーニングデータセットが極端なクラス不均衡に苦しむ場合、パフォーマンスが良くない。
近年の研究では、半教師付き方式でアウト・オブ・ディストリビューションデータによる直接トレーニングが一般化性能を損なうことが報告されている。
そこで我々は,オープンセットノイズラベルを用いて学習データセットのクラス前のバランスを再調整する,オープンサンプリングと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2022-06-17T14:29:52Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
本稿では,特徴のランダムなサブセットを乱してビューを形成するコントラスト学習手法であるSCARFを提案する。
SCARFは既存の戦略を補完し、オートエンコーダのような代替手段より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-29T08:08:33Z) - Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training [20.242645823965145]
タスク指向対話システムにおいて、スコープ外インテント検出は実用上重要である。
本稿では,テストシナリオをシミュレートして,スコープ外インテント分類器をエンドツーエンドに学習する手法を提案する。
提案手法を4つのベンチマーク・ダイアログ・データセット上で広範囲に評価し,最先端のアプローチに対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-16T08:17:18Z) - Open-World Semi-Supervised Learning [66.90703597468377]
本稿では,従来のクラスを認識するためにモデルを必要とする,新しいオープンワールド半教師付き学習環境を提案する。
データの分類とクラスタ化を同時に行うアプローチであるORCAを提案する。
我々は,ORCAが新しいクラスを正確に発見し,ベンチマーク画像分類データセット上で以前に見られたクラスにサンプルを割り当てることを示した。
論文 参考訳(メタデータ) (2021-02-06T07:11:07Z) - Out-distribution aware Self-training in an Open World Setting [62.19882458285749]
オープンワールド環境ではラベルのないデータを活用して予測性能をさらに向上します。
注意深いサンプル選択戦略を含む,自己学習を意識したアウト・ディストリビューションを導入する。
当社の分類器は、設計外分布を意識しており、タスク関連の入力と無関係な入力を区別できます。
論文 参考訳(メタデータ) (2020-12-21T12:25:04Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
受信した無線信号のサブサンプリングは、ハードウェア要件と信号処理アルゴリズムの計算コストを緩和するために重要である。
本稿では,無線通信システムにおけるディープラーニングを用いた自動変調分類のためのサブサンプリング手法を提案する。
論文 参考訳(メタデータ) (2020-05-10T06:11:13Z) - Hybrid Models for Open Set Recognition [28.62025409781781]
オープンセット認識は、トレーニングセット内のどのクラスにも属さないサンプルを検出するために分類器を必要とする。
本稿では,入力データを結合埋め込み空間にエンコードするエンコーダと,サンプルを不整クラスに分類する分類器と,フローベース密度推定器からなるOpenHybridを提案する。
標準オープンセットベンチマークの実験では、エンドツーエンドの訓練されたOpenHybridモデルは最先端の手法やフローベースのベースラインを大きく上回っている。
論文 参考訳(メタデータ) (2020-03-27T16:14:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。